Sentiment analysis on public opinion of electric vehicles usage in Indonesia using support vector machine algorithms
Abstract
Keywords
Full Text:
PDFReferences
Potoglou, D., Song, R., & Santos, G. (2023). Public charging choices of electric vehicle users: A review and conceptual framework. Transportation Research Part D: Transport and Environment, vol. 121, no. 103824, pp. 1-22.
Samuel, Y., Delima, R., & Rahmat, R. (2015). Implementasi metode k-nearest neighbor dengan decision rule untuk klasifikasi subtopik berita, Jurnal Khatulistiwa Informatika, vol. 10, pp. 1-14.
Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. In Proceedings Of The 2nd International Conference on Knowledge Capture, pp. 70-77.
Pertiwi, S. R. G. (2018). Perbandingan metode k-nearest neighbor dan support vector machine dalam analisis sentimen twitter terhadap stasiun televisi berita Indonesia, [Dissertation], Yogyakarta: Universitas Gadjah Mada.
Astuti, I. N. F., Darmawan, I., & Pramesti, D. (2020). Analisis sentimen pada data kuesioner evaluasi dosen oleh mahasiswa (edom) Prodi Sistem Informasi Telkom University menggunakan algoritma support vector machine. eProceedings of Engineering, vol. 7, no. 2, pp. 7018-7025.
Ridwansyah, T. (2022). Implementasi text mining terhadap analisis sentimen masyarakat dunia di twitter terhadap Kota Medan menggunakan k-fold cross validation dan naïve bayes classifier. Klik: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 5, pp. 178-185.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and. Techniques, Waltham: Morgan Kaufmann Publishers.
Maddison, J., & Jeske, D. (2014). Fear and perceived likelihood of victimization in traditional and cyber settings. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL), vol. 4, no. 4, pp. 23-40.
Yulian, E. (2018). Text mining dengan k-means clustering pada tema LGBT dalam arsip tweet masyarakat Kota Bandung. Jurnal Matematika “MANTIK, vol. 4, no. 1, pp. 53-58.
Aditya, B. R. (2015). Penggunaan web crawler untuk menghimpun tweets dengan metode pre-processing text mining. Jurnal Infotel, vol. 7, no. 2, pp. 93-100.
Bholat, D., Hansen, S., Santos, P., & Schonhardt-Bailey, C. (2015). Text Mining for Central Banks. England: Center for Central Banking Studies, Bank of England.
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. J. (2011). Sentiment analysis of twitter data. In Proceedings of the workshop on language in social media (LSM 2011), pp. 30-38.
Coletta, L. F., da Silva, N. F., Hruschka, E. R., & Hruschka, E. R. (2014, October). Combining classification and clustering for tweet sentiment analysis. In IEEE: 2014 Brazilian conference on intelligent systems, pp. 210-215.
Novantirani, A., Sabariah, M. K., & Effendy, V. (2015). Analisis sentimen pada twitter untuk mengenai penggunaan transportasi umum darat dalam kota dengan metode support vector machine. eProceedings of Engineering, vol. 2, no. 1, pp. 1177-1183.
C. Troussas, M. Virvou, K. J. Espinosa, K. Llaguno, dan J. Caro, “Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning,” dalam IISA 2013, IEEE, Jul 2013, hlm. 1–6. doi: 10.1109/IISA.2013.6623713.
Chakraborty, K., Bhattacharyya, S., Bag, R., & Hassanien, A. A. (2018). Sentiment analysis on a set of movie reviews using deep learning techniques. Social network analytics: Computational research methods and techniques, 127. Cambridge: Elsevier Inc.
Lidya, S. K., Sitompul, O. S., & Efendi, S. (2015). Sentiment analysis pada teks Bahasa Indonesia menggunakan support vector machine (SVM) dan K-Nearest Neighbor (K-NN). Proceeding Sentika 2015, pp. 1-8.
Goh, R. Y., & Lee, L. S. (2019). Credit scoring: a review on support vector machines and metaheuristic approaches. Advances in Operations Research, no. 1974794, pp. 1-30.
Mammone, A., Turchi, M., & Cristianini, N. (2009). Support vector machines. Wiley Interdisciplinary Reviews: Computational Statistics, vol. 1, no. 3, 283-289.
Mansourifar, H., & Shi, W. (2020). Deep synthetic minority over-sampling technique. arXiv preprint arXiv:2003.09788.
Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2012). DBSMOTE: density-based synthetic minority over-sampling technique. Applied Intelligence, vol. 36, pp. 664-684.
Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of artificial intelligence research, vol. 61, pp. 863-905.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, vo. 16, pp. 321-357.
Hennenfent, G., & Herrmann, F. J. (2008). Simply denoise: Wavefield reconstruction via jittered undersampling. Geophysics, vol. 73, no. 3, pp. 19-28.
Prusa, J., Khoshgoftaar, T. M., Dittman, D. J., & Napolitano, A. (2015, August). Using random undersampling to alleviate class imbalance on tweet sentiment data. In 2015 IEEE international conference on information reuse and integration, pp. 197-202.
Wongvorachan, T., He, S., & Bulut, O. (2023). A comparison of undersampling, oversampling, and SMOTE methods for dealing with imbalanced classification in educational data mining. Information, vol. 14, no. 54, pp. 1-15.
Irawaty, I., Andreswari, R., & Pramesti, D. (2020, September). Vectorizer comparison for sentiment analysis on social media youtube: A case study. In 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE), pp. 69-74.
Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, vol. 15, no. 12, pp. 31314-31338.
Visa, S., Ramsay, B., Ralescu, A. L., & Van Der Knaap, E. (2011). Confusion matrix-based feature selection. Maics, vol. 710, no. 1, pp. 120-127.
Nasution, M. R. A., & Hayaty, M. (2019). Perbandingan akurasi dan waktu proses algoritma K-NN dan SVM dalam analisis sentimen twitter. J. Inform, vol. 6, no. 2, pp. 226-235.
DOI: http://dx.doi.org/10.36055/tjst.v19i2.21967
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.