Application of activated carbon/ TiO2 composite for ammonia degradation from leaching process in methyl iso cyanate production

Muhammad Rifki Syaputra, Hilal Hamdi, Sidik Maulana Permana, Nina Arlofa, Tiur Elysabeth

Abstract


The wastewater in the washing process in Methyl Iso Cyanate production line contains ammonia which causes air pollution. Therefore, the ammonia waste processing system is needed that can degrade ammonia so that its concentration decreases and reduces the pollution. Photocatalytic degradation of ammonia is an attractive technology because of its easy operation, high efficiency, low cost, and low secondary pollutants. The photocatalytic process produces hydroxyl groups from the decomposition of water which can oxidize ammonia into nitrate and nitrogen gas. This research aims to process ammonia waste by combining adsorption and photocatalysis processes to obtain better performance in degrading ammonia. The research began with the preparation of activated carbon as an adsorbent and the synthesis of activated carbon-TiO2 composite material. Activated carbon is heated at 500º C for 6 hours for the activation process. Composite material synthesis is carried out using the slurry method. Activated carbon performance testing was carried out at weight variations of 10, 20 and 30 gram. Measurement of ammonia concentration was carried out using the spectrophotometry method. Optimum results were obtained at an activated carbon weight of 30 gram with a reduction in ammonia concentration of 1.01%. TiO2 as much as 5% of the weight of activated carbon (30 gram) is dissolved in ethanol and activated carbon is added to obtain a composite material. In the composite material performance test, a maximum reduction in ammonia concentration of 45% was obtained using the ultrasonic stirring method.

Keywords


Wastewater, activated carbon, TiO2, composite, ammonia degradation.

Full Text:

PDF

References


Liu, Y., Li, L., & Goel, R. (2009). Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions. Journal of Hazardous Materials, 167(1), 959-965. doi:https://doi.org/10.1016/j.jhazmat.2009.01.082

Zou, C.-y., Liu, S.-q., Shen, Z., Zhang, Y., Jiang, N.-s., & Ji, W.-c. (2017). Efficient removal of ammonia with a novel graphene-supported BiFeO3 as a reusable photocatalyst under visible light. Chinese Journal of Catalysis, 38(1), 20-28. doi:https://doi.org/10.1016/S1872-2067(17)62752-9

Gutierrez-Wing, M. T., & Malone, R. F. (2006). Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacultural Engineering, 34(3), 163-171. doi:https://doi.org/10.1016/j.aquaeng.2005.08.003

Ou, H.-H., Hoffmann, M. R., Liao, C.-H., Hong, J.-H., & Lo, S.-L. (2010). Photocatalytic oxidation of aqueous ammonia over platinized microwave-assisted titanate nanotubes. Applied Catalysis B: Environmental, 99(1), 74-80. doi:https://doi.org/10.1016/j.apcatb.2010.06.002

Darestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:https://doi.org/10.1016/j.jece.2017.02.016

Rezaei, E., Azar, R., Nemati, M., & Predicala, B. (2017). Gas phase adsorption of ammonia using nano TiO2-activated carbon composites – Effect of TiO2 loading and composite characterization. Journal of Environmental Chemical Engineering, 5(6), 5902-5911. doi:https://doi.org/10.1016/j.jece.2017.11.010

Qajar, A., Peer, M., Andalibi, M. R., Rajagopalan, R., & Foley, H. C. (2015). Enhanced ammonia adsorption on functionalized nanoporous carbons. Microporous and Mesoporous Materials, 218, 15-23. doi:https://doi.org/10.1016/j.micromeso.2015.06.030

Elysabeth, T., & Ramayanti, G. (2019). Modification of Lampung and Bayah natural zeolite to enhance the efficiency of removal of ammonia from wastewater. Asian Journal of Chemistry, 31(4), 873-878.

Zheng, W., Hu, J., Rappeport, S., Zheng, Z., Wang, Z., Han, Z., et al. (2016). Activated carbon fiber composites for gas phase ammonia adsorption. Microporous and Mesoporous Materials, 234(Supplement C), 146-154. doi:https://doi.org/10.1016/j.micromeso.2016.07.011

Mohammadi, Z., Sharifnia, S., & Shavisi, Y. (2016). Photocatalytic degradation of aqueous ammonia by using TiO2ZnO/LECA hybrid photocatalyst. Materials Chemistry and Physics, 184, 110-117. doi:https://doi.org/10.1016/j.matchemphys.2016.09.031

Altomare, M., Chiarello, G. L., Costa, A., Guarino, M., & Selli, E. (2012). Photocatalytic abatement of ammonia in nitrogen-containing effluents. Chemical Engineering Journal, 191, 394-401. doi:https://doi.org/10.1016/j.cej.2012.03.037

Jansson, I., Suárez, S., Garcia-Garcia, F. J., & Sánchez, B. (2015). Zeolite–TiO2 hybrid composites for pollutant degradation in gas phase. Applied Catalysis B: Environmental, 178, 100-107. doi:https://doi.org/10.1016/j.apcatb.2014.10.022

Sylvia, N., Fahmi, A., Meriatna, M., & Rozana, D. (2017). Adsorpsi Pb2+ (Timbal) menggunakan karbon aktif dari cangkang kernel kelapa sawit pada single bed dan double bed column. Paper presented at the Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe.

Elysabeth, T., Zulnovri, Ramayanti, G., & Slamet. (2019). Application of TiO2-Bayah Natural Zeolite Composite for Degradation of Ammonia Gas Pollutant. Asian Journal of Chemistry, 31(8), 1643-1648. doi:10.14233/ajchem.2019.21811.




DOI: http://dx.doi.org/10.62870/tjst.v20i1.22609

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.