Hierarchical clustering algorithm-dendogram using Euclidean and Manhattan distance
Abstract
Keywords
Full Text:
PDFReferences
Abbas, K. A. et al. (2023). Unsupervised machine learning technique for classifying production zones in unconventional reservoirs. Int. J. Intell. Networks, vol. 4, pp. 29–37. Doi: 10.1016/j.ijin.2022.11.007.
Huang, J., Yu, Z. L., & Gu, Z. (2018). A clustering method based on extreme learning machine. Neurocomputing, vol. 277, pp. 108–119, Feb. 2018. Doi: 10.1016/j.neucom.2017.02.100.
Chhabra, A., Masalkovaite, K., & Mohapatra, P. (2021). An Overview of Fairness in Clustering. IEEE Access, vol. 9, pp. 130698–130720. Doi: 10.1109/ACCESS.2021.3114099.
Thilagavathi, G., Srivaishnavi, D., & Aparna, N. (2013). A Survey on Efficient Hierarchical Algorithm used in Clustering. Int. J. Eng. Res. Technol., vol. 2, no. 9, pp. 2553–2556.
Saket, S., & Pandya, S. (2016). Implementation of Extended K-Medoids Algorithm to Increase Efficiency and Scalability using Large Datasets. Int. J. Comput. Appl., vol. 146, no. 5, pp. 19–23, Jul. 2016. Doi: 10.5120/ijca2016910701.
Krishnamurthy, L. et al. (2011). Large genetic variation for heat tolerance in the reference collection of chickpea ( Cicer arietinum L.) germplasm. Plant Genet. Resour., vol. 9, no. 01, pp. 59–69, Apr. 2011. Doi: 10.1017/S1479262110000407.
Murtagh, F., & Contreras, P. (2017). Algorithms for hierarchical clustering: an overview II. WIREs Data Min. Knowl. Discov., vol. 7, no. 6, Nov. 2017. Doi: 10.1002/widm.1219.
Zhang, Z., Murtagh, F., Van Poucke, S., Lin, S., & Lan, P. (2017). Hierarchical cluster analysis in clinical research with heterogeneous study population: highlighting its visualization with R. Ann. Transl. Med., vol. 5, no. 4, pp. 75–75, Feb. 2017. Doi: 10.21037/atm.2017.02.05.
Rani, Y., & Rohil, H. (2013). A Study of Hierarchical Clustering Algorithm. International Journal of Information and Computation Technology, vol. 3, no. 11, pp. 1225–1232.
Sembiring, R. W., Zain, J. M., & Embong, A. (2011). A Comparative Agglomerative Hierarchical Clustering Method to Cluster Implemented Course. No. January, 2011, [Online]. Available: http://arxiv.org/abs/1101.4270
Miller, H. J. (2007). Geographic Data Mining and Knowledge Discovery, in The Handbook of Geographic Information Science, Wiley, 2007, pp. 352–366. doi: 10.1002/9780470690819.ch19.
Camiz, S. & Pillar, V. (2007). Comparison of single and complete linkage clustering with the hierarchical factor classification of variables. Community Ecol., vol. 8, no. 1, pp. 25–30, Jun. 2007. Doi: 10.1556/ComEc.8.2007.1.4.
Gere, A. (2023). Current Research in Food Science Recommendations for validating hierarchical clustering in consumer sensory projects. Curr. Res. Food Sci., vol. 6, no. May, p. 100522, 2023. Doi: 10.1016/j.crfs.2023.100522.
Murtagh, F. (2014). Ward ’ s Hierarchical Agglomerative Clustering Method : Which Algorithms Implement Ward ’ s Criterion ?. J. Classif., vol. 295, no. October, pp. 274–295. Doi: 10.1007/s00357-.
Xu, N., Finkelman, R. B., Dai, S., Xu, C., & Peng, M. (2021). Average Linkage Hierarchical Clustering Algorithm for Determining the Relationships between Elements in Coal. ACS Omega, vol. 6, no. 9, pp. 6206–6217, Mar. 2021. Doi: 10.1021/acsomega.0c05758.
Han & Kamber. (2011). Data Mining: Concepts and Techniques, 3rd Editio. Burlington: Morgan Kaufmann.
Ponnmoli & Selvamuthukumaran. (2014). Analysis of face recognition using manhattan distance algorithm with image segmentation. Intl. J. Comput. Sci. Mob. Comput, vol. 3, pp. 18–27.
Vergani, A. A. & Binaghi, E. (2018). A soft davies-bouldin separation measure. IEEE Int. Conf. Fuzzy Syst., vol. 2018-July, no. February, 2018. Doi: 10.1109/FUZZ-IEEE.2018.8491581.
Yahyaoui, H., & Own, H. S. (2018). Unsupervised clustering of service performance behaviors. Inf. Sci. (Ny)., vol. 422, pp. 558–571, Jan. 2018. Doi: 10.1016/j.ins.2017.08.065.
Pal, N. R., & Biswas, J. (1997). Cluster validation using graph theoretic concepts,” Pattern Recognit., vol. 30, no. 6, pp. 847–857. Doi: 10.1016/S0031-3203(96)00127-6.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65. Doi: 10.1016/0377-0427(87)90125-7.
DOI: http://dx.doi.org/10.62870/tjst.v20i1.23187
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.