Development of self-polishing antifouling paint with cerium oxide nanoparticle additives

Bening Kambuna, Yanyan Dwiyanti, Arini Nikitasari, Muhammad Imam Prasetyo, Aditya Rahman

Abstract


The research on self-polishing antifouling paint with cerium oxide nanoparticle additives represents a significant advancement in ship protection technology. This study aims to develop a more effective and environmentally friendly solution to prevent the growth of fouling organisms, a persistent issue in the maritime industry. Cerium oxide nanoparticles are employed to reduce the release rate of copper, the active component in many antifouling paints. The study investigates (1) the effect of cerium oxide concentration on the copper (Cu) release rate and hydrophobicity of the antifouling paint, (2) the impact of salinity on these properties, and (3) differences in the coating mechanism between paints with and without cerium oxide additives. Cerium oxide nanoparticles (50 nm) were incorporated into the paint at concentrations of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%. The coated samples were immersed in synthetic seawater and Tanjung Pasir seawater for 45 days. Results show that different CeO₂ concentrations influence the release rates of Cu and zinc (Zn). A 0.2% concentration of CeO₂ yielded the highest Cu release rate at 1.4778 µg/cm², while the highest Zn release rate (0.234 µg/cm²) was observed at 0.5% CeO₂. Additionally, CeO₂ additives altered the surface characteristics of the antifouling paint, increasing its hydrophilicity as indicated by contact angle values dropping below 90°.

Keywords


Antifouling paint; Cerium oxide; Nanoparticle; Self-polishing antifouling; Hydrophobicity

Full Text:

PDF

References


D. Su, Y. Liu, J. Chang, Y. Yang, X. He, and X. Bai, "Improved antifouling and anticorrosion performance of CeO₂ nanocoating prepared by mussel-inspired chemistry," Langmuir, vol. 41, no. 6, pp. 3951–3960, Feb. 2025, doi: 10.1021/acs.langmuir.4c04151.

E. Ytreberg, M. A. Bighiu, L. Lundgren, and B. Eklund, “XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats,” Environmental Pollution, vol. 213, pp. 594–599, Jun. 2016, doi: 10.1016/j.envpol.2016.03.029.

G. Priyotomo, L. Nuraini, H. Gunawan, J. Triwardono, S. Sundjono, and S. Prifiharni, “A preliminary field study of antifouling paint performance after short exposure in Mandara Bali, Indonesia,” International Journal of Engineering, vol. 34, no. 4, pp. 976–986, Apr. 2021, doi: 10.5829/ije.2021.34.04a.24.

R. Ding, X. Li, J. Wang, W. Li, X. Wang, dan T. Gui, “Antifouling properties and release of dissolved copper of cold spray Cu/Cu₂O coatings for ships and steel structures in marine environments,” Journal of Materials Engineering and Performance, vol. 27, no. 11, pp. 5947–5963, Nov. 2018, doi: 10.1007/s11665-018-3580-7.

F. Faÿ, M. Gouessan, I. Linossier, dan K. Réhel, “Additives for efficient biodegradable antifouling paints,” International Journal of Molecular Sciences, vol. 20, no. 2, p. 361, Jan. 2019, doi: 10.3390/ijms20020361.

Z. Zhang, R. Chen, D. Song, J. Yu, G. Sun, Q. Liu, S. Han, J. Liu, H. Zhang, dan J. Wang, “Guanidine-functionalized graphene to improve the antifouling performance of boron acrylate polymer,” Progress in Organic Coatings, vol. 159, p. 106396, Oct. 2021, doi: 10.1016/j.porgcoat.2021.106396.

T. S. Jamil, E. S. Mansor, H. Abdallah, A. M. Shaban, dan E. R. Souaya, “Novel anti-fouling mixed matrix CeO₂/Ce₇O₁₂ nanofiltration membranes for heavy metal uptake,” Journal of Environmental Chemical Engineering, vol. 6, no. 3, pp. 3273–3282, Jun. 2018, doi: 10.1016/j.jece.2018.05.006.

A. Rodríguez-Sánchez, J. C. Leyva-Díaz, B. Muñoz-Palazón, M. A. Rivadeneyra, M. Hurtado-Martínez, D. Martín-Ramos, A. González-Martínez, J. M. Poyatos, dan J. González-López, “Biofouling formation and bacterial community structure in hybrid moving bed biofilm reactor-membrane bioreactors: Influence of salinity concentration,” Water, vol. 10, no. 9, p. 1133, Sep. 2018, doi: 10.3390/w10091133.

P. R. Roberge, Handbook of Corrosion Engineering, New York, USA: McGraw-Hill, 1999.

J. P. Lord, “Impact of seawater temperature on growth and recruitment of invasive fouling species at the global scale,” Marine Ecology, vol. 38, no. 2, p. e12404, Dec. 2017, doi: 10.1111/maec.12404.

S. Li, K. Feng, J. Li, Y. Li, Z. Li, L. Yu, and X. Xu, "Marine antifouling strategies: Emerging opportunities for seawater resource utilization," Chemical Engineering Journal, vol. 486, p. 149859, 2024, doi: 10.1016/j.cej.2024.149859.

X. Xu, S.-F. Guo, and G. J. Vancso, "Perceiving and countering marine biofouling: Structure, forces, and processes at surfaces in sea water across the length scales," Langmuir, vol. 41, no. 12, pp. 7996–8018, Apr. 2025, doi: 10.1021/acs.langmuir.5c00450.

A. J. Martín-Rodríguez, J. M. Babarro, F. Lahoz, M. Sanson, V. S. Martín, M. Norte, and J. J. Fernández, "From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: Antifouling profile of alkyl triphenylphosphonium salts," PLoS ONE, vol. 10, no. 4, p. e0123652, Apr. 2015, doi: 10.1371/journal.pone.0123652.

P. Rajala, E. Sohlberg, O. Priha, I. Tsitko, H. Väisänen, M. Tausa, and L. Carpén, "Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater," Journal of Marine Science and Engineering, vol. 4, no. 4, p. 74, Nov. 2016, doi: 10.3390/jmse4040074.

J. Zhang, X. Li, J. Wang, W. Xu, J. Duan, S. Chen, dan B. Hou, "Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria," Journal of Ocean University of China, vol. 16, no. 6, pp. 1213–1219, Dec. 2017. [Online]. Tersedia: https://doi.org/10.1007/s11802-017-3266-z.

H. G. Sonjaya, Cat Antifouling untuk Penanganan Kerusakan Struktur Jembatan Akibat Biota Penempel, Bandung: Pusat Penelitian dan Pengembangan Jalan dan Jembatan (PUSJATAN), 2016. [Online]. Tersedia: https://binamarga.pu.go.id/perpustakaan/repositori/cat-antifouling-untuk-penanganan-kerusakan-struktur-jembatan-akibat-biota-penempel.

X. Xu, S. Guo, and G. J. Vancso, "Perceiving and Countering Marine Biofouling: Structure, Forces, and Processes at Surfaces in Sea Water Across the Length Scales," Langmuir, vol. 41, no. 12, pp. 7996–8018, Apr. 2025, doi: 10.1021/acs.langmuir.5c00450.

V. K. Murugan, H. Mohanram, M. Budanovic, A. Latchou, R. D. Webster, A. Miserez, dan M. Seita, "Accelerated corrosion of marine-grade steel by a redox-active, cysteine-rich barnacle cement protein," npj Materials Degradation, vol. 4, no. 1, Art. no. 20, Jul. 2020, doi: 10.1038/s41529-020-0124-z.

T. H. E. Dobson, A. Yunnie, D. Kaloudis, N. O. Larrosa, dan H. Coules, "Biofouling and corrosion rate of welded Nickel Aluminium Bronze in natural and simulated seawater," Biofouling, vol. 40, no. 2, pp. 193–208, Mar. 2024, doi: 10.1080/08927014.2024.2326067.

S. Prifiharni, L. Nuraini, G. Priyotomo, J. Triwardono, S. Sundjono, H. Gunawan, dan J. W. Mudaryoto, "The investigation of antifouling paint efficacy after long exposure in the Gulf of Benoa, Indonesia," AIP Conference Proceedings, vol. 2382, no. 1, p. 060004, Aug. 2021, doi: 10.1063/5.0058206.

I. Michalak dan K. Chojnacka, "Biocides," in Encyclopedia of Toxicology, Edisi ke-3, P. Wexler, Ed. Amsterdam, Dutch: Elsevier, 2014, vol. 1, hlm. 461–463.

L. Schröder, F. Hellweger, dan A. Putschew, "Copper leaching from recreational vessel antifouling paints in freshwater: A Berlin case study," Journal of Environmental Management, vol. 301, p. 113895, Jan. 2022, doi: 10.1016/j.jenvman.2021.113895.

S. Pourhashem et al., "Antifouling nanocomposite polymer coatings for marine applications: A review on experiments, mechanisms, and theoretical studies," Journal of Materials Science & Technology, vol. 118, pp. 73–113, Aug. 2022, doi: 10.1016/j.jmst.2021.11.061.

Tnemec Company, Inc., "The Importance of Antifouling on Marine Vessels," 2025. [Online]. Available: https://tnemec.com/remedy-index-page/antifoul-coatings-marine/.

H. Liang, X. Shi, dan Y. Li, "Technologies in Marine Antifouling and Anti-Corrosion Coatings: A Comprehensive Review," Coatings, vol. 14, no. 12, p. 1487, Nov. 2024, doi: 10.3390/coatings14121487.

T. P. Rasitha, N. G. Krishna, B. Anandkumar, S. C. Vanithakumari, dan J. Philip, "A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives," Advances in Colloid and Interface Science, vol. 324, p. 103090, Feb. 2024, doi: 10.1016/j.cis.2024.103090.

M. Dong, L. Liu, D. Wang, J. Yang, M. Liu, dan J. Chen, "Synthesis and Properties of Self-Polishing Antifouling Coatings Based on BIT-Acrylate Resins," Coatings, vol. 12, no. 7, p. 891, Jul. 2022, doi: 10.3390/coatings12070891.

H. Zhang et al., "Comparative study on the degradation of two self-polishing antifouling, coating systems with copper-based antifouling agents," Coatings, vol. 12, no. 8, p. 1156, Aug. 2022. [Online]. Available: https://www.mdpi.com/2079-6412/12/8/1156. [Accessed: May 22, 2025].

S. Habib, E. Fayyad, M. Nawaz, A. Khan, R. A. Shakoor, R. Kahraman, dan A. Abdullah, "Cerium Dioxide Nanoparticles as Smart Carriers for Self-Healing Coatings," Nanomaterials, vol. 10, no. 4, p. 791, Apr. 2020, doi: 10.3390/nano10040791.

A. Nikitasari et al., "Copper dissolution rate of modified self-polishing antifouling paint with cerium oxide," Jurnal Sains Materi Indonesia, vol. 26, no. 2, pp. 138–145, 2025. [Online]. Available: https://ejournal.brin.go.id/jsmi/article/download/8753/8382/30159. [Accessed: May 22, 2025].

ASTM D1141-98, Standard Practice for the Preparation of Substitute Ocean Water, ASTM International, West Conshohocken, PA, USA, 2003.

I.-T. Liu, M.-H. Hon, dan L. G. Teoh, "The Synthesis, Characterization and Optical Properties of Nanocrystallined Cerium Dioxide by the Hydrothermal Method," Materials Transactions, vol. 58, no. 3, pp. 505–508, Mar. 2017, doi: 10.2320/matertrans.M2016285.

D. M. Yebra, S. Kiil, and K. Dam-Johansen, "Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings," Progress in Organic Coatings, vol. 53, no. 2, pp. 256–275, 2004, doi: 10.1016/j.porgcoat.2005.03.001.

M. S. Selim, S. A. El-Safty, M. A. El-Sockary, A. I. Hashem, O. M. Abo Elenien, A. M. EL-Saeed, dan N. A. Fatthallah, "Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling," RSC Advances, vol. 5, no. 78, pp. 63175–63185, 2015, doi: 10.1039/C5RA07400B.

M. Q. Khan, D. Kharaghani, N. Nishat, A. Shahzad, T. Hussain, Z. Khatri, C. Zhu, dan I. S. Kim, "Preparation and characterizations of multifunctional PVA/ZnO nanofibers composite membranes for surgical gown application," Journal of Materials Research and Technology, vol. 8, no. 1, pp. 1–7, Jan. 2019, doi: 10.1016/j.jmrt.2018.08.013.

E. E. Ubuo, I. A. Udoetok, A. T. Tyowua, I. O. Ekwere, dan H. S. Al-Shehri, "The Direct Cause of Amplified Wettability: Roughness or Surface Chemistry?," Journal of Composites Science, vol. 5, no. 8, p. 213, Aug. 2021, doi: 10.3390/jcs5080213.




DOI: http://dx.doi.org/10.62870/tjst.v21i1.29582

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mega888 android

mega888 ios

mega888 login

mega

pussy888

mega888

mega888

mega888 apk

mega888 ios

mega888 android

mega888 game

mega888 download

mega888 free credit

mega888 free test id

mega888 original

918kiss

pussy888

ntc33

joker123

xe88

ace333

mega888

mega888 download

mega888 ios

mega888 original

mega888 online casino

mega888 games

mega888

mega888

pussy888

918kiss

xe88

joker123

ntc33

mega888

918kiss

pussy888

joker123

xe88

ntc33

mega888

mega888 game

mega888 apk

mega888 apk

mega888

mega888

mega888 malaysia

mega888

mega888

mega888

mega888

mega888

mega888

mega888

pussy888

mega888 game

kiss918

kiss918

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

12SPIN

12BET

12WIN

mega888

slot malaysia

CASINO JR

12SPIN

12SPIN

12SPIN