Efficiency of phosphate concentration reduction in laundry wastewater using the electrocoagulation method

Dhara Yuniar, Agung Sugiharto

Abstract


Laundry wastewater contains high levels of phosphates derived from detergent additives, such as sodium tripolyphosphate (STPP), which can trigger eutrophication and degrade water quality if discharged directly into water bodies without treatment. This study aimed to evaluate the efficiency of the electrocoagulation method in reducing phosphate concentrations in laundry wastewater and to assess its potential as a practical and environmentally friendly solution for wastewater management. The electrocoagulation process utilized aluminum electrodes with varying voltages (10, 20, and 30 volts) and contact times (30, 60, and 90 minutes). The results showed that the highest efficiency was achieved at 30 volts and a contact time of 90 minutes, with a phosphate concentration reduction of 96.61%, from 0.277 mg/L to 0.009 mg/L. These findings indicate that increasing voltage and contact time accelerates floc formation and enhances phosphate precipitation efficiency. Thus, electrocoagulation proved to be an efficient and environmentally friendly alternative to conventional coagulation, as it requires no additional chemicals and produces less sludge.

Keywords


Laundry wastewater; Phosphate; Electrocoagulation

Full Text:

PDF

References


N. N. Larasati, S. Y. Wulandari, L. Maslukah, M. Zainuri, and K. Kunarso, “Detejen pollutant content and water quality in the estuary waters of Tapak River, Semarang,” Indonesian J. Oceanogr., vol. 3, no. 1, pp. 1–13, Mar. 2021, doi: 10.14710/ijoce.v3i1.9470.

K. C. Ho, Y. H. Teow, J. Y. Sum, Z. J. Ng, and A. W. Mohammad, “Water pathways through the ages: Integrated laundry wastewater treatment for pollution prevention,” Sci. Total Environ., Mar. 15, 2021, doi: 10.1016/j.scitotenv.2020.143966.

L. Omolara, “Sustainable water supply: Potential of recycling laundry wastewater for domestic use,” J. Civil Eng. Environ. Sci., pp. 56–60, Nov. 2017, doi: 10.17352/2455-488x.000029.

E. York, J. Tadio, and S. O. Antwi, “Simulating studies on phosphate (PO₄³⁻) removal from laundry wastewater using biochar: Dudinin approach,” 2024, doi: 10.37256/ujgc.2120244556.

S. A. Mousavi and F. Khodadoost, “Effects of detergents on natural ecosystems and wastewater treatment processes: A review,” Environ. Sci. Pollut. Res., Sep. 1, 2019, doi: 10.1007/s11356-019-05802-x.

Minister of Environment Republic of Indonesia, “Standards for the effluent quality of domestic wastewater as per Regulation No. P.68 Year 2016 of the Minister of Environment, Republic of Indonesia,” 2016, p. 11.

X. Chen et al., “Mitigating phosphorus pollution from detergents in the surface waters of China,” Sci. Total Environ., vol. 804, Jan. 2022, doi: 10.1016/j.scitotenv.2021.150125.

N. Akhtar, M. I. Syakir Ishak, S. A. Bhawani, and K. Umar, “Various natural and anthropogenic factors responsible for water quality degradation: A review,” Water, vol. 13, no. 19, Oct. 1, 2021, doi: 10.3390/w13192660.

H. Badamasi, M. N. Yaro, A. Ibrahim, and I. A. Bashir, “Impacts of phosphates on water quality and aquatic life,” Chem. Res. J., vol. 4, no. 3, pp. 124–133, 2019.

S. O. Akinnawo, “Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies,” Environ. Challenges, Aug. 1, 2023, doi: 10.1016/j.envc.2023.100733.

Standar Nasional Indonesia, “How to test phosphate levels with an ascorbic acid spectrophotometer,” 2005.

W. A. H. Altowayti et al., “The role of conventional methods and artificial intelligence in the wastewater treatment: A comprehensive review,” Processes, vol. 10, no. 9, Sep. 1, 2022, doi: 10.3390/pr10091832.

L. Merabti et al., “Hybrid coagulation–membrane filtration techniques for sustainable soap wastewater treatment,” Water, vol. 17, no. 10, May 2025, doi: 10.3390/w17101411.

A. Klimonda and I. Kowalska, “Water recovery from laundry wastewater by integrated purification systems,” Membranes, vol. 15, no. 4, Apr. 2025, doi: 10.3390/membranes15040125.

G. Crini and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ. Chem. Lett., Mar. 1, 2019, doi: 10.1007/s10311-018-0785-9.

A. Nishat et al., “Wastewater treatment: A short assessment on available techniques,” Alexandria Eng. J., Aug. 1, 2023, doi: 10.1016/j.aej.2023.06.054.

S. Bener, Ö. Bulca, B. Palas, G. Tekin, S. Atalay, and G. Ersöz, “Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study,” Process Saf. Environ. Prot., vol. 129, pp. 47–54, Sep. 2019, doi: 10.1016/j.psep.2019.06.010.

A. Othmani et al., “A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment,” Environ. Res., vol. 215, Dec. 2022, doi: 10.1016/j.envres.2022.114294.

A. Shahedi, A. K. Darban, F. Taghipour, and A. Jamshidi-Zanjani, “A review on industrial wastewater treatment via electrocoagulation processes,” Curr. Opin. Electrochem., Aug. 1, 2020, doi: 10.1016/j.coelec.2020.05.009.

H. Yang, J. Hao, Z. Han, S. Cheng, and L. Shi, “Comparison of chemical and electrocoagulation methods in treating wastewater,” in Proc. Eur. Alliance Innov., Feb. 2024, doi: 10.4108/eai.24-11-2023.2343425.

T. Jovanović et al., “Mechanism of the electrocoagulation process and its application for treatment of wastewater: A review,” Adv. Technol., vol. 10, no. 1, pp. 63–72, 2021, doi: 10.5937/savteh2101063j.

S. Boinpally, A. Kolla, J. Kainthola, R. Kodali, and J. Vemuri, “A state-of-the-art review of the electrocoagulation technology for wastewater treatment,” Water Cycle, Jan. 1, 2023, doi: 10.1016/j.watcyc.2023.01.001.

I. D. Tegladza, Q. Xu, K. Xu, G. Lv, and J. Lu, “Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal,” Process Saf. Environ. Prot., Feb. 1, 2021, doi: 10.1016/j.psep.2020.08.048.

R. Rosilla, M. Azizah, and D. Setiawati, “Phosphate level in Cikaniki River water,” Sains Natural: J. Biol. Chem., vol. 5, no. 2, pp. 124–131, Dec. 2019, doi: 10.31938/jsn.v5i2.263.

Rusdianasari, Y. Bow, A. Syakdani, and D. I. Mayasari, “The effectiveness of electrocoagulation process in rubber wastewater treatment using combination electrodes,” in Proc. IOP Conf. Ser.: Earth Environ. Sci., vol. 709, Mar. 2021, doi: 10.1088/1755-1315/709/1/012009.

P. Lestari, C. Amri, S. Sudaryanto, J. Poltekkes, and K. Yogyakarta, “Effectiveness of the number of aluminum electrode pairs in the electrocoagulation process to reduce phosphate levels of laundry liquid waste,” J. Kesehatan Lingkungan, vol. 9, no. 1, pp. 38–50, 2017, doi: 10.29238/sanitasi.v9i1.36.

S. Yamba, R. M. Moutloali, and N. Mabuba, “Corrugated iron sheets for electrocoagulation of sulphate ions in industrial effluents,” Case Stud. Chem. Environ. Eng., vol. 2, Sep. 2020, doi: 10.1016/j.cscee.2020.100061.

B. P. Santoso, S. Abdullah, Z. Budiono, J. K. Lingkungan, K. Kementerian, and K. Semarang, “Determination of the optimum dose of poly aluminum chloride in reducing phosphate levels in optimum laundry wastewater,” Buletin Kesehatan Lingkungan Masyarakat, vol. 41, pp. 116–122, 2022, doi: 10.31983/keslingmas.v41i3.8814.

A. Takdastan et al., “Electrocoagulation process for treatment of detergent and phosphate,” Arch. Hyg. Sci., vol. 6, no. 1, pp. 66–74, Jan. 2017, doi: 10.29252/ArchHygSci.6.1.66.

R. R. Ramadhan, P. Herawati, and H. Hadrah, “Allowance of laundry wastewater contaminant parameters by electrocoagulation process,” Fidelity: J. Teknik Elektro, vol. 5, no. 1, pp. 43–47, Jan. 2023, doi: 10.52005/fidelity.v5i1.140.

S. F. Abed AL-Rubaye, N. A. AlHaboubi, and A. H. Al-Allaq, “Factors affecting electrocoagulation process for different water types: A review,” Al-Khwarizmi Eng. J., vol. 20, no. 1, pp. 17–32, Mar. 2024, doi: 10.22153/kej.2024.10.001.




DOI: http://dx.doi.org/10.62870/tjst.v21i1.32615

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

mega888 android

mega888 ios

mega888 login

mega

pussy888

mega888

mega888

mega888 apk

mega888 ios

mega888 android

mega888 game

mega888 download

mega888 free credit

mega888 free test id

mega888 original

918kiss

pussy888

ntc33

joker123

xe88

ace333

mega888

mega888 download

mega888 ios

mega888 original

mega888 online casino

mega888 games

mega888

mega888

pussy888

918kiss

xe88

joker123

ntc33

mega888

918kiss

pussy888

joker123

xe88

ntc33

mega888

mega888 game

mega888 apk

mega888 apk

mega888

mega888

mega888 malaysia

mega888

mega888

mega888

mega888

mega888

mega888

mega888

pussy888

mega888 game

kiss918

kiss918

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303

BRI303