Thermal effectiveness comparison analysis on air-based PV/T system with varying top-to-bottom cavity ratios using CFD simulation
Abstract
The development of air-based thermal photovoltaic systems is still challenged in optimizing heat transfer efficiency. One important aspect in this endeavor is to find and improve the cooling channel geometry design. To address this, this study aims to evaluate the effect of several variations of upper and lower cavities on the performance of dual-pass PV/T systems using a computational fluid dynamics (CFD) simulation approach. Four geometry ratio configurations (1:1, 1:4, 2:3, and 3:2) were analyzed based on turbulence intensity, effective thermal conductivity, and air temperature output. The investigation results show that the 3:2 configuration excels in several parameters. The findings highlighted that the 3:2 geometry showed improved turbulence generation and heat exchanger efficiency compared to the other shapes. Specifically, the 3:2 geometry generated turbulence intensity reaching 78% compared to the other geometries, which did not even reach 60%. In addition, the 3:2 geometry produces superior effective thermal conductivity and the most uniform heat transfer. Meanwhile, the 1:4 configuration achieved the highest outlet temperature of 29.54°C, making this geometry potentially suitable for solar energy-based drying applications. The investigation results provide practical insights and geometry-based PV/T system design alloys to improve energy efficiency in sustainable thermal applications.
Keywords
Full Text:
XMLReferences
H. H. Pourasl, R. V. Barenji, and V. M. Khojastehnezhad, “Solar energy status in the world: A comprehensive review,” Energy Reports, vol. 10, pp. 3474–3493, Nov. 2023, doi: 10.1016/j.egyr.2023.10.022.
A. Kharisma, S. Pinandita, and A. E. Jayanti, “Literature review: Kajian potensi energi surya alternatif energi listrik,” Jurnal Energi Baru dan Terbarukan, vol. 5, no. 2, pp. 145–154, Jul. 2024, doi: 10.14710/jebt.2024.23956.
A. S. Pramudiyanto and S. W. A. Suedy, “Energi bersih dan ramah lingkungan dari biomassa untuk mengurangi efek gas rumah kaca dan perubahan iklim yang ekstrim,” Jurnal Energi Baru dan Terbarukan, vol. 1, no. 3, pp. 86–99, Oct. 2020, doi: 10.14710/jebt.2020.9990.
A. O. M. Maka and J. M. Alabid, “Solar energy technology and its roles in sustainable development,” Clean Energy, vol. 6, no. 3, pp. 476–483, Jun. 2022, doi: 10.1093/ce/zkac023.
D. Wen, W. Gao, F. Qian, Q. Gu, and J. Ren, “Development of solar photovoltaic industry and market in China, Germany, Japan and the United States of America using incentive policies,” Energy Exploration & Exploitation, vol. 39, no. 5, pp. 1429–1456, Sep. 2021, doi: 10.1177/0144598720979256.
S. Comello, S. Reichelstein, and A. Sahoo, “The road ahead for solar PV power,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 744–756, Sep. 2018, doi: 10.1016/j.rser.2018.04.098.
K. Basyar, Z. Arifin, D. D. D. P. Tjahjana, and S. D. Prasetyo, “Analysis of the impact of different fin configurations as passive coolants on photovoltaic performance,” International Journal of Heat and Technology, vol. 42, no. 6, pp. 2115–2124, Dec. 2024, doi: 10.18280/ijht.420630.
S. Zine, B. Djedjiga, S. Fethya, L. Salah, and B. Ahmed, “Experimental study of hybrid photovoltaic (PV/T) thermal solar collector with air cooling for domestic use: A thermal and electrical performances evaluation,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 116, no. 1, pp. 170–183, Apr. 2024, doi: 10.37934/arfmts.116.1.170183.
K. S. Kramer, S. Mehnert, G. Munz, S. Helmling, and M. Lämmle, “Photovoltaic thermal technology collectors, systems, and applications,” Energy Technology, vol. 11, no. 12, Dec. 2023, doi: 10.1002/ente.202300378.
A. Chauhan, V. V. Tyagi, and S. Anand, “Futuristic approach for thermal management in solar PV/thermal systems with possible applications,” Energy Conversion and Management, vol. 163, pp. 314–354, May 2018, doi: 10.1016/j.enconman.2018.02.008.
J.-H. Kim, S.-M. Kim, and J.-T. Kim, “Experimental performance of an advanced air-type photovoltaic/thermal (PVT) collector with direct expansion air handling unit (AHU),” Sustainability, vol. 13, no. 2, p. 888, Jan. 2021, doi: 10.3390/su13020888.
M. Patil, A. Sidramappa, A. M. Hebbale, and J. S. Vishwanatha, “Computational fluid dynamics (CFD) analysis of air-cooled solar photovoltaic (PV/T) panels,” Materials Today: Proceedings, vol. 100, pp. 93–101, 2024, doi: 10.1016/j.matpr.2023.05.198.
X. Yang, L. Sun, Y. Yuan, X. Zhao, and X. Cao, “Experimental investigation on performance comparison of PV/T-PCM system and PV/T system,” Renewable Energy, vol. 119, pp. 152–159, Apr. 2018, doi: 10.1016/j.renene.2017.11.094.
S. D. Prasetyo et al., “Optimization of photovoltaic thermal collectors using fins: A review of strategies for enhanced solar energy harvesting,” Mathematical Modelling of Engineering Problems, vol. 10, no. 4, pp. 1235–1248, Aug. 2023, doi: 10.18280/mmep.100416.
A. Rajani et al., “U-turn shape effect on effective thermal conductivity of double pass photovoltaic thermal (PVT) systems configuration,” CFD Letters, vol. 17, no. 5, pp. 12–25, Nov. 2024, doi: 10.37934/cfdl.17.5.1225.
S.-B. Kim, K.-A. Moon, B.-H. An, K.-H. Choi, and H.-U. Choi, “Experimental performance evaluation of air-based photovoltaic–thermal collector with rectangular turbulators and longitudinal fins,” Energy Reports, vol. 12, pp. 1315–1324, Dec. 2024, doi: 10.1016/j.egyr.2024.07.038.
Amrizal, Y. P. Hidayat, and M. Irsyad, “Performance comparison of single and double pass PV/T solar collectors integrated with rectangular plate fin absorber,” in IOP Conference Series: Materials Science and Engineering, vol. 1173, no. 1, p. 012023, Aug. 2021, doi: 10.1088/1757-899X/1173/1/012023.
H. A. Kazem, “Evaluation and analysis of water-based photovoltaic/thermal (PV/T) system,” Case Studies in Thermal Engineering, vol. 13, p. 100401, Mar. 2019, doi: 10.1016/j.csite.2019.100401.
A. L. Abdullah, S. Misha, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit, “Theoretical study and indoor experimental validation of performance of the new photovoltaic thermal solar collector (PVT) based water system,” Case Studies in Thermal Engineering, vol. 18, p. 100595, Apr. 2020, doi: 10.1016/j.csite.2020.100595.
G. Barone, A. Buonomano, C. Forzano, A. Palombo, and O. Panagopoulos, “Photovoltaic thermal collectors: Experimental analysis and simulation model of an innovative low-cost water-based prototype,” Energy, vol. 179, pp. 502–516, Jul. 2019, doi: 10.1016/j.energy.2019.04.140.
G. Badran and M. Dhimish, “A comparative study of bifacial versus monofacial PV systems at the UK’s largest solar plant,” Clean Energy, vol. 8, no. 4, pp. 248–260, Aug. 2024, doi: 10.1093/ce/zkae043.
J. Jang and K. Lee, “Practical performance analysis of a bifacial PV module and system,” Energies, vol. 13, no. 17, p. 4389, Aug. 2020, doi: 10.3390/en13174389.
W. Gu, T. Ma, S. Ahmed, Y. Zhang, and J. Peng, “A comprehensive review and outlook of bifacial photovoltaic (bPV) technology,” Energy Conversion and Management, vol. 223, p. 113283, Nov. 2020, doi: 10.1016/j.enconman.2020.113283.
D. Kurz et al., “An analysis of the increase in energy efficiency of photovoltaic installations by using bifacial modules,” Energies, vol. 18, no. 5, p. 1296, Mar. 2025, doi: 10.3390/en18051296.
A. Gagliano, G. M. Tina, S. Aneli, and S. Nižetić, “Comparative assessments of the performances of PV/T and conventional solar plants,” Journal of Cleaner Production, vol. 219, pp. 304–315, May 2019, doi: 10.1016/j.jclepro.2019.02.038.
W. E. Ewe, K. Sopian, M. Mohanraj, A. Fudholi, N. Asim, and A. Ibrahim, “Exergetic performance of jet impingement bifacial photovoltaic-thermal solar air collector with different packing factors and jet distributions,” Heat Transfer Engineering, vol. 45, no. 10, pp. 904–914, May 2024, doi: 10.1080/01457632.2023.2227807.
A. Rajani et al., “Multi-objective optimisation and sensitivity analysis of component influences on efficiency in air-based bifacial photovoltaic thermal systems (B-PVT),” International Journal of Renewable Energy Development, vol. 13, no. 4, pp. 736–749, Jul. 2024, doi: 10.61435/ijred.2024.60212.
W. M. Shaban, A. E. Kabeel, M. El Hadi Attia, and F. M. Talaat, “Optimizing photovoltaic thermal solar systems efficiency through advanced artificial intelligence driven thermal management techniques,” Applied Thermal Engineering, vol. 247, p. 123029, Jun. 2024, doi: 10.1016/j.applthermaleng.2024.123029.
V.-S. Hudișteanu, N.-C. Cherecheș, F.-E. Țurcanu, I. Hudișteanu, and C. Romila, “Impact of temperature on the efficiency of monocrystalline and polycrystalline photovoltaic panels: A comprehensive experimental analysis for sustainable energy solutions,” Sustainability, vol. 16, no. 23, p. 10566, Dec. 2024, doi: 10.3390/su162310566.
S. B. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000, doi: 10.1017/CBO9780511840531.
M. A. Talib, A. A. Eidan, A. H. Tawfeeq, and F. M. K. AL-Fatlawe, “Effect of changing the water flow rate on the efficiency of hybrid PV/T uncovered collectors without glasses: Numerical study,” CFD Letters, vol. 16, no. 2, pp. 91–104, Nov. 2023, doi: 10.37934/cfdl.16.2.91104.
S. Kasmaiee, S. Kasmaiee, and A. Farshad, “Unsteady CFD simulation of a rotor blade under various wind conditions,” Scientific Reports, vol. 14, no. 1, p. 19176, Aug. 2024, doi: 10.1038/s41598-024-70350-5.
A. Wodołażski, N. Howaniec, B. Jura, A. Bąk, and A. Smoliński, “CFD numerical modelling of a PV–TEG hybrid system cooled by air heat sink coupled with a single-phase inverter,” Materials, vol. 14, no. 19, p. 5800, Oct. 2021, doi: 10.3390/ma14195800.
E. Gül, Z. Kılıç, E. İkincioğulları, and M. C. Aydın, “Investigation of the effect of variable-sized energy dissipating blocks on sluice gate performance,” Water SA, vol. 50, no. 1, pp. 1–10, Jan. 2024, doi: 10.17159/wsa/2024.v50.i1.4064.
M. Fterich, H. Chouikhi, S. Sandoval-Torres, H. Bentaher, A. Elloumi, and A. Maalej, “Numerical simulation and experimental characterization of the heat transfer in a PV/T air collector prototype,” Case Studies in Thermal Engineering, vol. 27, p. 101209, Oct. 2021, doi: 10.1016/j.csite.2021.101209.
N. Fatchurrohman and S. T. Chia, “Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: Simulation approach,” in IOP Conference Series: Materials Science and Engineering, vol. 257, p. 012060, Oct. 2017, doi: 10.1088/1757-899X/257/1/012060.
D. C. Wilcox, Turbulence Modeling for CFD, 2nd ed. La Cañada, CA: DCW Industries, 1998.
S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Boca Raton, FL: CRC Press, 2018, doi: 10.1201/9781482234213.
Z. Vlahostergios, D. Missirlis, M. Flouros, C. Albanakis, and K. Yakinthos, “Effect of turbulence intensity on the pressure drop and heat transfer in a staggered tube bundle heat exchanger,” Experimental Thermal and Fluid Science, vol. 60, pp. 75–82, Jan. 2015, doi: 10.1016/j.expthermflusci.2014.08.011.
DOI: http://dx.doi.org/10.62870/tjst.v21i1.32679
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Teknika: Jurnal Sains dan Teknologi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.