EKSTRAKSI PANAS PADA REVERSE FLOW REACTOR UNTUK OKSIDASI KATALITIK METANA SELAMA PERIODE START-UP

Teguh Kurniawan, Yogi Wibisono Budhi, Yazid Bindar

Abstract


Makalah ini mengkaji tentang pemodelan dan simulasi oksidasi katalitik metana menggunakan reverse flow reactor (RFR). Pokok bahasan tertuju pada pengembangan prosedur pengambilan panas dalam periode start-up untuk umpan dengan konsentrasi tetap, yaitu 1%-v metana dan umpan dengan konsentrasi berfluktuasi, yaitu pada rentang 0,1-1%-v metana, yang mengikuti fungsi gelombang persegi. Hasil simulasi menunjukkan pengambilan panas dapat dilakukan selama start-up baik untuk konsentrasi tetap maupun konsentrasi berfluktuasi tanpa menyebabkan RFR padam. Pengambilan panas pada switching time (ST) yang cepat memberikan beberapa keuntungan dibandingkan pada ST  yang lama, yaitu lebih banyak panas yang dapat diekstrak dan lebih besar penurunan temperaturnya, sehingga aman bagi katalis dan reaktor.


Keywords


emodelan dan simulasi; prosedur start-up; reverse flow reactor; switching time; ekstraksi panas;

Full Text:

PDF

References


Balaji, S., dan Lakshminarayanan, S. (2005). Heat removal from reverse flow reactors used in methane combustion. The Canadian Journal of Chemical Engineering, 83.

Baressi, A.A., Baldi, G, dan Fissore, D. (2007). Forced Unsteady-State Reactors as Efficient Devices for Integrated Processes: Case Histories and New Perspectives. Industrial & Engineering Chemistry Research, Vol.,46(25).

Bosomiu, M., Bozga, G., dan Soare,G (2008). Methane Combustion Over a Commercial Platinum on Alumina Catalyst: Kinetics and Catalyst Deactivation. Revue Roumaine de Chimie, , 53(12), 1105–1115.

Effendy, M., Budhi, Y.W., Bindar, Y., Subagjo (2009). Penentuan metode operasi reverse flow reactor dengan umpan fluktuatif dalam pengolahan emisi gas metana di stasiun kompresor. Prosiding SNTKI, Bandung.

Eigenberger, G. dan Nieken, U. (1988). Catalytic Combustion with Periodic Flow Reversal. Chemical Engineering Science, 43, 2109–2115.

Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn,G. Raga, M. Schulz and R. Van Dorland, (2007).

Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on ClimateChange [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Gawdzik, A. dan Rakowski, L. (1989). The methods of analysis of the dynamic properties of the adiabatic tubular reactor with switch flow. Computers chem. Engng, 13(10), 1165-1173.

Hayes, R.E. dan Kolaczkowski, S.T. (1997). Introduction to catalytic combustion, Gordon and Breach, Reading, UK.

Hayes, R.E. (2004). Catalytic solutions for fugitive methane emissions in the oil and gas sector.Chemical Engineering Science,59,4073-4080.

Kurniawan, T., Budhi, Y.W., Bindar, Y., (2010). Pemodelan dan simulasi reverse flow reactor untuk oksidasi katalitik metana: pengembanganprosedur start-up. Prosiding STKSR, Bandung.

Kushwaha, A., Poirier, M., Sapoundjiev, H., Hayes, R.E. (2004). Effect of reactor internal properties on the performance of a flow reversal catalytic reactor for methane combustion. Chemical Engineering Science, 59, 4081 – 4093

Kolios G., Frauhammer, J., Eigenberger, G. (2000). Review Autothermal fixed-bed reactor concepts. Chemical Engineering Science, 55, 5945-5967.

Le Treut, H., Somerville, U., Cubasch, Y., Ding, Mauritzen C., Mokssit A., Peterson, T. dan Prather, M. (2007). Historical Overview of Climate Change. In: Climate Change 2007: The

Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Reportof the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M.

Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Lee, J.H. dan Trimm, D.L (1995). Catalytic combustion of methane. Fuel Processing Technology, 42, 339-359

Litto, R., Hayes, R.E., & Liu, B. (2006). Capturing fugitive methane emissions from natural gas compressor buildings, Journal of Environmental Management, 84 (3), 347-361.

Matros, Y.S dan Bunimovich, G.A. (1996). Reverse flow operation in fixed bed catalytic reactors. Catal. Rev.-sci. eng., 38(1), 1-68.

Moore, S., Freund, P., Riemer, P., Smith, A. (1998). Abatement of methane emissions. IEQ Greenhouse Gas R&D Programme, Cheltenham, ISBN 1898373167

Salomons, S., Hayes, R.E., Poirier, M, & Sapoundjiev, H. (2003). Flow reversal reactor for catalytic combustion of lean methane mixtures. Catalysis Today, 83, 59–69.

Sapoundjiev, H. dan Aube, F. (1999).Catalytic flow reversal reactor technology: an opportunity for heat recovery and greenhouse gas elimination from mine ventilation air. Canmet energy technology centre, Varennes, Canada.

Tsyrulnikov, P.G., Sal’nikov V.S., Drozdov, V.A., Noskov, A.S., Chumakova, N.A., Ermolaev, V.K., dan Malakhova, I.V. (2001). Deep Oxidation of Methane on Alumina–Manganese and PtContaining Catalysts. Journal of Catalysis, 198, 164–171.

Weart, S.R. (2008). The Discovery of Global Warming. The American Institute of physics.




DOI: http://dx.doi.org/10.36055/tjst.v8i1.6705

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.