Sintesis dan karakterisasi grafena oksida dari tempurung kelapa dengan metode sonikasi dan hidrotermal

Mohamad Bima Putera Honorisal, Nurul Huda, Tri Partuti, Amalia Sholehah

Abstract


Tempurung kelapa termasuk sampah organik, sehingga dapat digunakan sebagai sumber karbon alternatif. Grafit merupakan salah satu alotrop karbon yang memiliki struktur mirip sarang lebah yang terdiri dari banyak lapisan, sedangkan grafena hanya memiliki satu lapisan karbon. Untuk mensintesis grafena dapat menggunakan metode sonikasi dengan ukuran partikel grafit +200#, -200+230#, dan -230# serta waktu proses selama 30 dan 60 menit. Grafit didapatkan dari arang tempurung kelapa yang berwarna coklat dan berasal dari perkebunan kelapa di Banten. Setelah proses sonikasi, grafit masuk ke proses hidrotermal dengan dan tanpa gas nitrogen. Grafena oksida yang dihasilkan dikarakterisasi menggunakan Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dan scanning electron microscopy (SEM). Berdasarkan hasil XRD, sampel yang telah sonikasi masih berbentuk grafit oksida. Hal ini didukung dengan hasil SEM yang memiliki morfologi yang berpori dan belum transparan serta tidak terdeteksinya titik 2D pada karakterisasi Raman. Pada karakterisasi FTIR, terdapat ikatan C=C. Berdasarkan karakterisasi Raman, sampel GV 24 menunjukan rasio iD/iG sebesar 0,84. Pada karakterisasi FTIR terdeteksi ikatan O-H, ikatan C-H, dan ikatan C=C. Morfologi permukaan terlihat lebih transparan dari grafit yang telah disonikasi. Berdasarkan karakterisasi Raman, sampel GH 4 menunjukan rasio iD/iG sebesar 0,84. Pada karakterisasi FTIR terdeteksi ikatan O-H, ikatan C=C, dan ikatan C-O. Morfologi permukaan lebih transparan yang menandakan bahwa grafit telah terkelupas. Hasil penelitian menunjukan bahwa semakin lama proses sonikasi dan ukuran partikel -200# +230# menciptakan lapisan yang transparan dan tipis serta menghasilkan grafena oksida setelah melalui proses hidrotermal.

 

Coconut shell is an organic waste and can be used as an alternative carbon source. Graphite is one of the carbon allotropes which has a honeycomb-like structure consisting of many layers, whereas graphene has only single carbon layer. To synthesize graphene, sonication method used by using graphite particle size +200#, -200# +230# and -230#, and processing time of 30 and 60 minutes. Graphite was obtained from brown coconut shell charcoal and comes from coconut plantations in Banten. After the sonication process, graphite processed by hydrothermal method with and without nitrogen gas. Characterization of graphene oxide was done by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Based on the XRD results, the sonicated sample is still in the form of graphite oxide. This is supported by SEM results that have porous morphology and are not transparent and 2D peaks are not detected in Raman characterization. In FTIR characterization, there is a C=C bond. Based on Raman characterization, the GV 24 sample shows an iD/iG ratio of 0.84. In FTIR characterization O-H bonds, C-H bonds, and C=C bonds were detected. Surface morphology looks more transparent than graphite that has been sonicated. Based on Raman characterization, the GH 4 sample shows an iD / iG ratio of 0.84. In FTIR characterization O-H bonds, C=C bonds, and C-O bonds were detected. The surface morphology is more transparent which indicates that the graphite has been peeled off. The results showed that the longer the sonication process and particle size -200# +230# creates a transparent and thin layer and produces graphene oxide after going through the hydrothermal process.


Keywords


Tempurung kelapa, grafit oksida, sonikasi, hidrotermal.

Full Text:

PDF (Indonesian)

References


Hendaryati, D. D., & Arianto, Y. (2016). Statistik Perkebunan Indonesia: Tree Crop Estate Statistics of Indonesia. Jakarta: Kementerian Pertanian Indonesia.

Kementerian Pertanian Indonesia. (2019). Produksi Kelapa Menurut Provinsi di Indonesia, 2015-2019. Jakarta: Kementerian Pertanian Republik Indonesia.

International Labour Organization (ILO). (2013). Kajian Kelapa dengan Pendekatan Rantai Nilai dan Iklim Usaha di Kabupaten Sarmi. Diakses dari: http://bit.ly/KajianKelapa. Diakses pada tanggal 1 Juni 2020 pukul 11.00 WIB.

Arfadiani, D., & Larasati, D. (2013). Pemanfaatan limbah tempurung kelapa muda melalui pengembangan desain produk alat makan. Jurnal Tingkat Sarjana Seni Rupa dan Desain, vol. 2, no. 1, pp. 1–8.

Inagaki, M., & Kang, F. (2014). Materials Science and Engineering of Carbon: Fundamentals, 2nd Edition. Oxford: Butterworth-Heinemann.

Allen, C. S., & Warner, J. H. (2013). Properties of Graphene - Electronic properties in Graphene: Fundamentals and Emergent Applications, pp. 61–127. Oxford: Elsevier Inc.

Gerasimov, G. (2019). Graphene-Based Gas Sensors - in Advanced Environmental Analysis: Applications of Nanomaterials Volume 2. C. M. Hussain and B. Karishov, Eds. The Royal Society of Chemistry.

Bhuyan, M. S. A., Uddin, M. N., Islam, M. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. Int. Nano Lett., vol. 6, no. 2, pp. 65–83.

Vinanza, N. E. (2018). Sintesis dan Karakterisasi Grafena Berbasis Arang Tempurung Kelapa. Serang: Universitas Sultan Ageng Tirtayasa.

Ling, L. J., Yee, C. S., & Jaafar, M. (2016). Effect of the sonication time on the properties of multilayer graphene. Proceeding of the 3rd International Conference of Global Network for Innovative Technology 2016 (3rd IGNITE-2016), AIP Proceeding, pp. 020004-1 – 020004-6.

Demirbas, A., (2004). Relationships between carbonization temperature and pyrolysis product from biomass. Energy Exploration & Exploitation, vol. 22, no. 6, pp. 411-420.

Gómez, D. A., Coello, J., & Maspoch, S. (2019). The influence of particle size on the intensity and reproducibility of Raman spectra of compacted samples. Vib. Spectrosc, vol. 100, no. October 2018, pp. 48–56.

Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Phys. Rep., vol. 473, No. 5–6, pp. 51–87.

Shao, G., Lu Y., Wu, F., Yang, C., Zeng, F., & Wu, Q. (2012). Graphene oxide: the mechanisms of oxidation and exfoliation. J. Mater. Sci., pp. 4400–4409.

Balogun, A. O., Lasode, A., Li, H., & Mcdonald, G. (2015). Fourier Transform Infrared (FTIR) study and thermal decomposition kinetics of sorghum bicolour glume and albizia pedicellaris residues. Waste and Biomass Volarization, vol. 6, No. 1, pp. 109–116.

Fathia, A. (2018). Sintesis dan Karakterisasi Graphene Oxide Terkombinasi Nanopartikel Perak dalam Fase Cair. Yogyakarta: Universitas Negeri Yogyakarta.

Alam, S. N., Sharma, N., & Kumar, L., (2017). Synthesis of Graphene Oxide (GO) by modified Hummers method and its thermal reduction to obtain Reduced Graphene Oxide (RGO). Graphene, pp. 1–18.

Ferrari, A. C., (2007). Raman spectroscopy of graphene and graphite: Disorder, electron – phonon coupling, doping and nonadiabatic effects. vol. 143, pp. 47–57.

Calderon-Ayala, G. et al. (2017). Green synthesis of reduced graphene oxide using ball milling. Carbon Lett., vol. 21, pp. 93–97.

Stengl, V., (2012). Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem. A Eur. J., pp. 1–9.

Mei, X., Meng, X., & Wu, F., (2015). Hydrothermal method for the production of reduced graphene oxide GO colloidal solution GO lamellar solid sample for conductivity test. Phys. E Low-dimensional syst. nanostructures, vol. 68, pp. 81–86.

Junaidi, M. & Susanti, D. (2014). Pengaruh variasi waktu ultrasonikasi dan waktu tahan hydrothermal terhadap struktur dan konduktivitas listrik material graphene. J. Tek. POMITS, vol. 3, no. 1, pp. F13-F18.




DOI: http://dx.doi.org/10.36055/tjst.v16i1.7519

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.