Analisis densitas, kuat tarik dan kekuatan magnet dari rubber magnet yang dibuat dari Ba-Ferrite dan silicon rubber

Giyanto Giyanto, Muljadi Muljadi

Abstract


Rubber magnet merupakan material maju yang dapat dipolarisasi secara magnetis yang tertanam dalam matriks karet lunak. Rubber magnet diaplikasikan sebagai komponen pada pintu atau jendela sebagai pengunci dan sealer, atau sebagai material perekat antara dua komponen, serta sebagai komponen motor listrik DC yang kecil. Penelitian ini dilakukan untuk mengetahui pengaruh komposisi silicon rubber terhadap sifat fisis, mekanik (kuat tarik) dan sifat kemagnetannya atau kekuatan magnet. Rubber magnet dibuat dengan menggunakan partikel magnet Ba-Ferrite (BaFe12O) dan silicon rubber (SR) sebagai perekat dengan komposisi 5%, 10%, 20% dan 30% berat SR. Kedua bahan baku tersebut dicampur hingga homogen, kemudian dibentuk dengan metode tuang. Selanjutnya sampel yang telah dibentuk dalam bentuk lembaran dikeringkan pada suhu kamar selama 2 jam. Karakterisasi sampel yang dilakukan meliputi pengukuran densitas, pengujian kuat tarik, dan kuat medan magnet menggunakan Gauss meter. Berdasarkan hasil karakterisasi bahwa dengan meningkatnya komposisi SR nilai densitas cenderung menurun, namun nilai kuat tarik dan elongasi cenderung meningkat hingga komposisi 20% SR, kemudian menurun pada komposisi 30% SR. Artinya semakin banyak kandungan SR maka fleksibilitasnya cenderung meningkat. Berdasarkan pengukuran kuat magnet menunjukkan bahwa sampel dengan komposisi SR yang semakin meningkat maka nilai kuat medan magnet cenderung menurun.

 

Rubber magnets are advanced, magnetically polarized materials embedded in a soft rubber matrix. They are applied as components in doors or windows as locks and sealers, or as an adhesive material between two components, and as a component of a small DC electric motor. This research was conducted to determine the effect of the composition of silicon rubber on its physical, mechanical (tensile strength) and magnetic properties or magnetic strength. Rubber magnets are made by using magnetic particles Ba-Ferrite (BaFe12O) and silicon rubber (SR) as an adhesive with a composition of 5%, 10%, 20% and 30% by weight of the SR. The two raw materials are mixed until homogeneous and then formed by the casting method. Furthermore, the samples that had been formed in sheet form were dried at room temperature for 2 hours. The sample characterization includes measurement of density, tensile strength test, and magnetic field strength using a Gauss meter. Based on the characterization results, with the increase in the SR composition the density value tended to decrease, but the tensile strength and elongation values tended to increase up to the composition of 20% SR, then decreased at the composition of 30% SR. This means that the more SR content, the flexibility tends to increase. Based on the measurement of magnetic strength using a Gauss meter, it shows that samples with an increasing SR composition, the value of the magnetic field strength tends to decrease.

 


Keywords


Magnet fleksibel; Silicon Rubber; kuat tarik Kuat medan magnet;

Full Text:

PDF (Indonesian)

References


Suprapedi, Muljadi, & Ramlan. (2020). Effect of silicon rubber composition on mechanical and magnetic properties of rubber composite Sr-ferrite magnet. AIP Conference Proceedings: The 1st International Conference on Physics and Applied Physics (The 1st ICP&AP) 2019: Fundamental and Innovative Research for Improving Competitive Dignified Nation and Industrial Revolution 4.0, vol, 2221, no. 1, pp. 110005.

Ramlan, Muljadi, Sardjono, P., Setiabudidaya, D., & Gulo, F. (2019). Influence of addition Ba-Ferrite on the hardness, magnetic properties and corrosion resistance of hybrid bonded magnet NdFeB. IOP Conf. Series: Journal of Physics: Conf. Series: 7th Asian Physics Symposium 29–31 August 2017, Bandung, Indonesia, vol. 1204, pp. 012013.

Kostishyn, V., Korovushkin, V., & Isaev, I. (2017). Study of the features of the magnetic and crystal structures of the Bafe 12-X Alxo19 and Bafe12-х Gaxo19 substituted hexagonal ferrites. Eastern-European Journal of Enterprise Technologies, vol. 1, no. 5(85), pp. 10-15.

Mokhtar, N., Abdullah, M., & Ahmad, S. (2012). Structural and magnetic properties of type-M Barium Ferrite-thermoplastic natural rubber nanocomposites. Sains Malaysiana, vol. 41, no. 9, pp. 1125–1131.

Pullar, R. C. (2012). Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science, vol. 57, no. 7, pp. 1191–1334.

Jiang, W., Li, W., Lou, J., & Wu, S. (2018). Study on magnetic properties of magnetic materials with multiple factors. IOP Conf. Series: Journal of Physics: Conf. Series, vol. 1087, no. 5, pp. 052026.

Malkinski, L. (2012). Advanced Magnetic Materials. Rijeka: InTech Janeza Trdine.

Matsuo, K., Matsuhashi, D., Fujihara, H., & Takeda, I. (2016). Development for Practical High Performance Ferrite magnet Motors. Meiden Review Series, vol. 167, no 2, pp. 11-14.

Wyslocka, E., & Ulewicz, R. (2015). Magnets: History, the current state and the future. Metal Conference: 24th International Conference on Metallurgy and Materials At: Brno, CZECH REPUBLIC.

Kruželák, J., Sýkora, R., Dosoudil, R., & Hudec, I. (2014). Rubber composites with incorporated magnetic filler. Polymery, vol. 59, pp. 819-824.

Ismail, H., Sam, S. T., Noor, A. F. M., & Bakar, A. A. (2007). Properties of ferrite-filled natural rubber composites. Polymer-Plastics Technology and Engineering, vol. 46, no. 6, pp. 641–650.

Kikuchi, T., Okazaki, Y., & Ikeda, K. (2005). Fine iron oxide powder as a raw material of soft ferrites. JFE Technical Report, no. 6, pp. 29-34.

Tadic, M., Panja, M., Tadic, B. V., Lazovic, J., Damnjanovic, V., Kopani, M., & Kopanja, L. (2019). Magnetic properties of hematite (α−Fe) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution. Journal of Electrical Engineering, vol. 70, no. 7S, pp. 71–76.

Ovalioglu, H., Sozeri, H., Kabaer, M., & Kucuk, I. (2010). Magnetic properties of nano-crystalline barium ferrite synthesized by different synthesis route. Acta Physica Polonica A, vol. 118, no. 5, pp. 1020-1021.

Zhang, H. & Cloud, A. (2006). The permeability characteristics of silicone rubber. The 2006 SAMPE Fall Technical Conference, Global Advances in Materials and Process Engineering”, proceedings, Coatings and Sealants Section, November 6 – 9.

Przybylski, M., Ślusarek, B., Bednarczyk, T., & Chmiel, G. (2019). Magnetic and mechanical properties of strontium ferrite and Nd–Fe–B rubber bonded permanent magnets. ACTA Physica Polonica A, vol. 136, no. 5, pp. 685-688.

Sinuhaji, P., Muljadi, Sardjono, P., Lingga, E., & Piliang, A. F. (2018). The effect of composite bonded magnet NdFeB/BaFe composition with an addition of bakelite to physical and magnetic properties. IOP Conf. Series: Journal of Physics: Conf. Series: The 8th International Conference on Theoretical and Applied Physics 20–21 September 2018, Medan, Indonesia, vol. 1120, pp. 012026.

Markovičová, L., & Zatkalíková, V. (2018). Composites with rubber matrix and ferrimagnetic filling. System Safety: Human - Technical Facility – Environment CzOTO, vol. 1, no. 1, pp. 776-781.

Sardjono, P., Muljadi, Suprapedi, Sinuaji, P., Ramlan & Gulo, F. (2017). Effect of composition polymeric PVB binder on physical, magnetic properties and microstructure of bonded magnet NdFeB. IOP Conf. Series: Journal of Physics: Conf. Series: 2nd International Symposium on Frontier of Applied Physics (ISFAP 2016) 3–5 October 2016, Jakarta, Indonesia, vol. 817, pp. 01205.

Kruzelak, J., Hudec, I., Dosoudil, R. (2017). Magnetic composites based on butadiene rubber and strontium ferrites. MOJ Polymer Science, vol. 1, no. 5, pp. 161‒167.




DOI: http://dx.doi.org/10.36055/tjst.v16i2.9074

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.