Perilaku Ketahanan Korosi Komposit Coating Poliuretan/Silika/ Karbon Pada Baja Karbon Rendah

Bambang Soegijono, Ferry Budhi Susetyo, Hamdan Akbar Notonegoro

Abstract


Salah satu problematika kendaraan bermotor saat ini adalah korosi. Umumnya cat pelindung akan cepat rusak karena disebabkan kondisi operasional kendaraan pada lingkungan yang tidak menentu. Komposit coating poliuretan dengan variasi silika/karbon disiapakan, kemudian diaplikasikan pada material baja karbon rendah dengan spray gun. Pada lapisan yang terbentuk di lakukan analisis Fourier Trasform Infra Red (FTIR), Thermogravimetry (TGA), Differential Scanning Calorimetry (DSC), Mikroskop Optik dan uji salt spray. Hasil FTIR, TGA, pengamatan optik dan uji salt spray menunjukkan semakin tinggi kadar karbon/silika maka akan semakin tahan terhadap korosi.

Keywords


silika, karbon, poliuretan, panas, korosi

Full Text:

PDF

References


Akbarian, M., Olya, M. E., Mahdavian, M., & Ataeefard, M. (2014). Effects of nanoparticulate silver on the corrosion protection performance of polyurethane coatings on mild steel in sodium chloride solution. Progress in Organic Coatings, 77(8), 1233–1240. https://doi.org/10.1016/j.porgcoat.2014.03.023

Horvath, C. D. (2004). The Future Revolution in Automotive High Strength Steel Usage. Gm (Pp). Retrieved from https://www.autosteel.org/~/media/Files/Autosteel/Great Designs in Steel/GDIS 2004/16 - The Future Revolution in Automotive AHSS Usage.pdf

Khun, N. W., Troconis, B. C. R., & Frankel, G. S. (2014). Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Progress in Organic Coatings, 77(1), 72–80. https://doi.org/10.1016/j.porgcoat.2013.08.003

Kowalczyk, K., Łuczka, K., Grzmil, B., & Spychaj, T. (2012). Anticorrosive polyurethane paints with nano- and microsized phosphates. Progress in Organic Coatings, 74(1), 151–157. https://doi.org/10.1016/j.porgcoat.2011.12.003

Liu, Y. H., Xu, J. B., Zhang, J. T., & Hu, J. M. (2017). Electrodeposited silica film interlayer for active corrosion protection. Corrosion Science, 120, 61–74. https://doi.org/10.1016/j.corsci.2017.01.017

Malaki, M., Hashemzadeh, Y., & Karevan, M. (2016). Effect of nano-silica on the mechanical properties of acrylic polyurethane coatings. Progress in Organic Coatings, 101, 477–485. https://doi.org/10.1016/j.porgcoat.2016.09.012

Palraj, S., Selvaraj, M., Maruthan, K., & Rajagopal, G. (2015). Corrosion and wear resistance behavior of nano-silica epoxy composite coatings. Progress in Organic Coatings, 81, 132–139. https://doi.org/10.1016/j.porgcoat.2015.01.005

Shirehjini, F. T., Danaee, I., Eskandari, H., & Zarei, D. (2016). Effect of Nano Clay on Corrosion Protection of Zinc-rich Epoxy Coatings on Steel 37. Journal of Materials Science and Technology, 32(11), 1152–1160. https://doi.org/10.1016/j.jmst.2016.08.017

Tong, Y., Bohm, S., & Song, M. (2017). The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Applied Surface Science, 424, 72–81. https://doi.org/10.1016/j.apsusc.2017.02.081

West, J. O. F., Critchlow, G. W., Lake, D. R., & Banks, R. (2016). Development of a superhydrophobic polyurethane-based coating from a two-step plasma-fluoroalkyl silane treatment. International Journal of Adhesion and Adhesives, 68, 195–204. https://doi.org/10.1016/j.ijadhadh.2016.03.007




DOI: http://dx.doi.org/10.36055/fwl.v0i0.4775

Refbacks

  • There are currently no refbacks.