Pengaruh Variasi Konsentrasi Carbon Dots Berbahan Dasar Limbah Kulit Melon Terhadap Pertumbuhan Tanaman Cabai

Azfa Restu Putra, Rahmat Firman Septiyanto, Yudi Guntara, Isriyanti Affifah

Sari


This study examines the effect of carbon dots synthesized from melon peel waste on chili plant growth. Carbon dots are carbon-based nanomaterials with fluorescent properties that exhibit high biocompatibility, low toxicity, and high resistance to photobleaching. This study employed a microwave synthesis method to produce carbon dot solutions from melon peel waste at concentrations of 50 mg/L, 60 mg/L, and 70 mg/L, with a control group consisting of distilled water without carbon dots. Chili pepper seeds were watered and observed for 10 days. The results showed that the application of carbon dot solutions accelerated seedling emergence and enhanced plant growth compared to the control. The sample with a concentration of 70 mg/L exhibited the highest growth, which was 25% higher than the control. UV-Vis analysis indicated that carbon dots absorb UV-B and UV-C light, which can support enhanced photosynthesis by increasing electron transfer rates and rubisco enzyme activity during the photosynthesis process. Thus, carbon dots derived from melon peel waste have potential as an environmentally friendly additive to support chili plant growth efficiency.

Teks Lengkap:

PDF

Referensi


Başoğlu, A., Ocak, Ü., & Gümrükçüoğlu, A. (2020). Synthesis of Microwave-Assisted Fluorescence Carbon Quantum Dots Using Roasted–Chickpeas and its Applications for Sensitive and Selective Detection of Fe3+ Ions. Journal of Fluorescence, 30, 515–526. https://doi.org/10.1007/s10895-019-02428-7

Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95(13), 2772–2778. https://doi.org/10.1002/jsfa.7106

Chandra, S., Pradhan, S., Mitra, S., Patra, P., Bhattacharya, A., Pramanik, P., & Goswami, A. (2014). High throughput electron transfer from carbon dots to chloroplast: A rationale of enhanced photosynthesis. Nanoscale, 6(7), 3647–3655. https://doi.org/10.1039/c3nr06079a

Chen, Q., Chen, L., Nie, X., Man, H., Guo, Z., Wang, X., Tu, J., Jin, G., & Ci, L. (2020). Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicology and Environmental Safety, 206, 111220. https://doi.org/10.1016/j.ecoenv.2020.111220

De Medeiros, T. V., Manioudakis, J., Noun, F., Macairan, J. R., Victoria, F., & Naccache, R. (2019). Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 7(24), 7175–7195. https://doi.org/10.1039/c9tc01640f

Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123. https://doi.org/10.1002/smll.201201225

Kottam, N., & Smrithi, S. P. (2021). “Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications.” Methods and Applications in Fluorescence, 9(1), 1–24. https://doi.org/10.1088/2050-6120/abc008

Kou, E., Yao, Y., Yang, X., Song, S., Li, W., Kang, Y., Qu, S., Dong, R., Pan, X., Li, D., Zhang, H., & Lei, B. (2021). Regulation Mechanisms of Carbon Dots in the Development of Lettuce and Tomato. ACS Sustainable Chemistry and Engineering, 9(2), 944–953. https://doi.org/10.1021/acssuschemeng.0c08308

Li, G., Xu, J., & Xu, K. (2023). Physiological Functions of Carbon Dots and Their Applications in Agriculture: A Review. Nanomaterials, 13(19), 1–17. https://doi.org/10.3390/nano13192684

Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., Li, S., Lifshitz, Y., Lee, S. T., & Kang, Z. (2018). Impacts of carbon dots on rice plants: Boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1(3), 663–672. https://doi.org/10.1021/acsabm.8b00345

Li, W., Wu, S., Zhang, H., Zhang, X., Zhuang, J., Hu, C., ... & Wang, X. (2018). Enhanced biological photosynthetic efficiency using light‐harvesting engineering with dual‐emissive carbon dots. Advanced Functional Materials, 28(44), 1804004.

Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437–448. https://doi.org/10.1039/c9qm00614a

Milenković, I., Borišev, M., Zhou, Y., Spasić, S. Z., Leblanc, R. M., & Radotić, K. (2021). Photosynthesis Enhancement in Maize via Nontoxic Orange Carbon Dots. Journal of Agricultural and Food Chemistry, 69(19), 5446–5451. https://doi.org/10.1021/acs.jafc.1c01094

Paul, A. L., Amalfitano, C. E., & Ferl, R. J. (2012). Plant growth strategies are remodeled by spaceflight. BMC Plant Biology, 12, 1-15. https://doi.org/10.1186/1471-2229-12-232

Sahana, S., Gautam, A., Singh, R., & Chandel, S. (2023). A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. Natural Products and Bioprospecting, 13(51), 1–21. https://doi.org/10.1007/s13659-023-00415-x

Saxena, M., Maity, S., & Sarkar, S. (2014). Carbon nanoparticles in “biochar” boost wheat (Triticum aestivum) plant growth. RSC Advances, 4(75), 39948–39954. https://doi.org/10.1039/c4ra06535b

Segalla, A., Szabò, I., Costantini, P., & Giacometti, G. M. (2005). Study of the effect of ion channel modulators on photosynthetic oxygen evolution. Journal of Chemical Information and Modeling, 45(6), 1691–1700. https://doi.org/10.1021/ci0501802

Sharma, A., & Das, J. (2019). Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology, 17(1), 1–24. https://doi.org/10.1186/s12951-019-0525-8

Suyatman, S. (2021). Menyelidiki Energi Pada Fotosintesis Tumbuhan. INKUIRI: Jurnal Pendidikan IPA, 9(2), 134. https://doi.org/10.20961/inkuiri.v9i2.50085

Tan, T. L., Zulkifli, N. A., Zaman, A. S. K., Jusoh, M. binti, Yaapar, M. N., & Rashid, S. A. (2021). Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops. Plant Physiology and Biochemistry, 162, 737–751. https://doi.org/10.1016/j.plaphy.2021.03.031

Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. Frontiers in Plant Science, 11, 1–18. https://doi.org/10.3389/fpls.2020.597642

Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., Liu, Y., & Kang, Z. (2018). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 136, 94–102. https://doi.org/10.1016/j.carbon.2018.04.051


Refbacks

  • Saat ini tidak ada refbacks.


Prosiding Seminar Nasional Pendidikan Fisika (Sendikfi) Untirta diterbitkan oleh Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa