Pengaruh Variasi Konsentrasi Carbon Dots Berbahan Dasar Limbah Kulit Melon Terhadap Pertumbuhan Tanaman Cabai
Sari
Teks Lengkap:
PDFReferensi
Başoğlu, A., Ocak, Ü., & Gümrükçüoğlu, A. (2020). Synthesis of Microwave-Assisted Fluorescence Carbon Quantum Dots Using Roasted–Chickpeas and its Applications for Sensitive and Selective Detection of Fe3+ Ions. Journal of Fluorescence, 30, 515–526. https://doi.org/10.1007/s10895-019-02428-7
Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95(13), 2772–2778. https://doi.org/10.1002/jsfa.7106
Chandra, S., Pradhan, S., Mitra, S., Patra, P., Bhattacharya, A., Pramanik, P., & Goswami, A. (2014). High throughput electron transfer from carbon dots to chloroplast: A rationale of enhanced photosynthesis. Nanoscale, 6(7), 3647–3655. https://doi.org/10.1039/c3nr06079a
Chen, Q., Chen, L., Nie, X., Man, H., Guo, Z., Wang, X., Tu, J., Jin, G., & Ci, L. (2020). Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicology and Environmental Safety, 206, 111220. https://doi.org/10.1016/j.ecoenv.2020.111220
De Medeiros, T. V., Manioudakis, J., Noun, F., Macairan, J. R., Victoria, F., & Naccache, R. (2019). Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C, 7(24), 7175–7195. https://doi.org/10.1039/c9tc01640f
Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 9(1), 115–123. https://doi.org/10.1002/smll.201201225
Kottam, N., & Smrithi, S. P. (2021). “Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications.” Methods and Applications in Fluorescence, 9(1), 1–24. https://doi.org/10.1088/2050-6120/abc008
Kou, E., Yao, Y., Yang, X., Song, S., Li, W., Kang, Y., Qu, S., Dong, R., Pan, X., Li, D., Zhang, H., & Lei, B. (2021). Regulation Mechanisms of Carbon Dots in the Development of Lettuce and Tomato. ACS Sustainable Chemistry and Engineering, 9(2), 944–953. https://doi.org/10.1021/acssuschemeng.0c08308
Li, G., Xu, J., & Xu, K. (2023). Physiological Functions of Carbon Dots and Their Applications in Agriculture: A Review. Nanomaterials, 13(19), 1–17. https://doi.org/10.3390/nano13192684
Li, H., Huang, J., Lu, F., Liu, Y., Song, Y., Sun, Y., Zhong, J., Huang, H., Wang, Y., Li, S., Lifshitz, Y., Lee, S. T., & Kang, Z. (2018). Impacts of carbon dots on rice plants: Boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1(3), 663–672. https://doi.org/10.1021/acsabm.8b00345
Li, W., Wu, S., Zhang, H., Zhang, X., Zhuang, J., Hu, C., ... & Wang, X. (2018). Enhanced biological photosynthetic efficiency using light‐harvesting engineering with dual‐emissive carbon dots. Advanced Functional Materials, 28(44), 1804004.
Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437–448. https://doi.org/10.1039/c9qm00614a
Milenković, I., Borišev, M., Zhou, Y., Spasić, S. Z., Leblanc, R. M., & Radotić, K. (2021). Photosynthesis Enhancement in Maize via Nontoxic Orange Carbon Dots. Journal of Agricultural and Food Chemistry, 69(19), 5446–5451. https://doi.org/10.1021/acs.jafc.1c01094
Paul, A. L., Amalfitano, C. E., & Ferl, R. J. (2012). Plant growth strategies are remodeled by spaceflight. BMC Plant Biology, 12, 1-15. https://doi.org/10.1186/1471-2229-12-232
Sahana, S., Gautam, A., Singh, R., & Chandel, S. (2023). A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. Natural Products and Bioprospecting, 13(51), 1–21. https://doi.org/10.1007/s13659-023-00415-x
Saxena, M., Maity, S., & Sarkar, S. (2014). Carbon nanoparticles in “biochar” boost wheat (Triticum aestivum) plant growth. RSC Advances, 4(75), 39948–39954. https://doi.org/10.1039/c4ra06535b
Segalla, A., Szabò, I., Costantini, P., & Giacometti, G. M. (2005). Study of the effect of ion channel modulators on photosynthetic oxygen evolution. Journal of Chemical Information and Modeling, 45(6), 1691–1700. https://doi.org/10.1021/ci0501802
Sharma, A., & Das, J. (2019). Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology, 17(1), 1–24. https://doi.org/10.1186/s12951-019-0525-8
Suyatman, S. (2021). Menyelidiki Energi Pada Fotosintesis Tumbuhan. INKUIRI: Jurnal Pendidikan IPA, 9(2), 134. https://doi.org/10.20961/inkuiri.v9i2.50085
Tan, T. L., Zulkifli, N. A., Zaman, A. S. K., Jusoh, M. binti, Yaapar, M. N., & Rashid, S. A. (2021). Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops. Plant Physiology and Biochemistry, 162, 737–751. https://doi.org/10.1016/j.plaphy.2021.03.031
Vanhaelewyn, L., Van Der Straeten, D., De Coninck, B., & Vandenbussche, F. (2020). Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. Frontiers in Plant Science, 11, 1–18. https://doi.org/10.3389/fpls.2020.597642
Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., Liu, Y., & Kang, Z. (2018). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 136, 94–102. https://doi.org/10.1016/j.carbon.2018.04.051
Refbacks
- Saat ini tidak ada refbacks.
Prosiding Seminar Nasional Pendidikan Fisika (Sendikfi) Untirta diterbitkan oleh Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa