Forecasting rainfall against flood potential using linear regression in the case study of serang city
Abstract
In 2022, Serang City experienced 166 floods, most of which occurred due to high rainfall. To anticipate and minimize the consequences that will occur by the flood disaster in 2023, rainfall forecasting is needed to forecast the potential flood areas in Serang City. The purpose of this research is to implement multiple linear regression analysis to forecast rainfall, forecast rainfall against flood potential, and identify the relationship between rainfall and flood events. The method of forecasting rainfall is done with multiple linear regression model analysis, Geographic Information System spatial analysis to forecast potential flood areas, and Pearson correlation test to identify the relationship between rainfall and flood events. The results show that rainfall in 2023 is predicted to be 66% of Serang City in the low category with rainfall values less than 1500 mm/year and 33% of other areas in the medium category with rainfall between 1500-2500 mm/year. In the same year, 9% of Serang City is predicted to have high flood potential, 25% medium, 1% low, and 64% is predicted to be safe from flooding. The relationship between rainfall and flood occurrence shows no correlation, so further research is needed.
Keywords
Full Text:
81-89References
Albeta, R. (2021). Studi Sebaran Curah Hujan Menggunakan Metode Interpolasi Invers Distance Weighted (IDW) di Sumatera Selatan. Universitas Sriwijaya.
Arianti, I., Soemarno, AW, H., & R, S. (2021). Rainfall Estimation By Using Thiessen Polygons, Inverse Distance Weighted, Spline, And Kriging Methods : A Case Study in Pontianak, West Kalimantan. International Journal of Education and Research, 6(11).
Azhari, A. (2015). Simulasi Prediksi Curah Hujan Bulanan Di Kota Medan Menggunakan Metode Regresi Linier Berganda. EINSTEIN E-JOURNAL, 3(2). https://doi.org/10.24114/einstein.v3i2.12346
Badan Meteorologi Klimatologi dan Geofisika Stasiun Klimatologi Banten. (2022). Buletin Klimatologi Provinsi Banten dan DKI Jakarta Tahun 2022. Stasiun Klimatologi Banten.
Badan Pusat Statistik Kota Serang. (2022). Kota Serang dalam Angka Serang Municipality in Figures 2022. BPS Kota Serang.
Bandawa Putri, S., Meirany, J., Novita Pratiwi, N., Deah Lestari, A., & Meddy Danial, M. (2023). Pemetaan Daerah Rawan Bencana Dalam Upaya Mitigasi Bencana Berbasis Gis Di Kecamatan Sungai Raya Kepulauan Kabupaten Bengkayang Provinsi Kalimantan Barat. Zona Laut Jurnal Inovasi Sains Dan Teknologi Kelautan, 4(2), 171–181. https://doi.org/10.62012/zl.v4i2.27374
Effendy, Z., & Daryono, D. (2018). Hubungan Curah Hujan dan Penggunaan Lahan Terhadap Genangan Banjir di Kecamatan Sidoarjo Kabupaten Sidoarjo. Jurnal Mahasiswa Universitas Negeri Surabaya, 2(1), 1–10.
Harlan, J. (2018). Analisis Regresi Linier. Jakarta: Gunadarma.
Hidayat, N. M., Pandiangan, A. E., & Pratiwi, A. (2018). Identifikasi perubahan curah hujan dan suhu udara menggunakan Rclimdex Di wilayah Serang. Jurnal Meteorologi Klimatologi Dan Geofisika, 5(2), 37–44.
Maulita, M., & Nurdin, N. (2023). Pendekatan Data Mining Untuk Analisa Curah Hujan Menggunakan Metode Regresi Linear Berganda (Studi Kasus: Kabupaten Aceh Utara). IDEALIS : InDonEsiA JournaL Information System, 6(2), 99–106. https://doi.org/10.36080/idealis.v6i2.3034
Mulyani, E. D. S., Septianingrum, I., Nurjanah, N., Rahmawati, R., Nurhasani, S., & K, K. M. R. (2019). Prediksi Curah Hujan Di Kabupaten Majalengka Dengan Menggunakan Algoritma Regresi. E-JURNAL JUSITI : Jurnal Sistem Informasi Dan Teknologi Informasi, 8(1), 67–77. https://doi.org/10.36774/JUSITI.V8I1.602
Nurdin, N., Fajriana, F., Maryana, M., & Zanati, A. (2022). Information System for Predicting Fisheries Outcomes Using Regression Algorithm Multiple Linear. Journal Of Informatics And Telecommunication Engineering, 5(2), 247–258. https://doi.org/10.31289/jite.v5i2.6023
Rahmadewi, R. R. F. C. A. (2023). Pengaruh Edukasi Penanggulangan Bencana Banjir Terhadap Tingkat Pengetahuan Kesiapsiagaan Banjir Pada Masyarakat Kota Serang. Universitas Sultan Ageng Tirtayasa.
Ramadhani, D., Hariyanto, T., & Nurwatik, N. (2022). Penerapan Metode Analytical Hierarchy Process (AHP) dalam Pemetaan Potensi Banjir Berbasis Sistem Informasi Geografis (Studi Kasus: Kota Malang, Jawa Timur). Geoid, 17(1), 72–80. https://doi.org/10.12962/j24423998.v17i1.10250
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
Surjoatmodjo, M. I. (2019). Analisis Potensi Pergerakan Arah Aliran Banjir Lumpur untuk Menunjang Kegiatan Mitigasi Bencana (Studi Kasus: Lumpur Sidoarjo Kecamatan Porong dan Tanggulangin). Institut Teknologi Sepuluh Nopember.
Yusuf, M., Setyanto, A., & Aryasa, K. (2022). Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression. J-SAKTI (Jurnal Sains Komputer Dan Informatika), 6(1), 405–417. https://doi.org/10.30645/J-SAKTI.V6I1.455
Refbacks
- There are currently no refbacks.