Comparative CFD Analysis of NACA 0012 and NACA 4415 Airfoils at Varying Angles of Attack on Aircraft Wings Using ANSYS Fluent
Abstract
During takeoff and approach to land, all aircraft move at low speed and high lift so that the wing is one of the main components of an airplane that has the basic function of being able to produce good aerodynamic performance characteristics so that objects can be lifted and maintain their position in the sky. In this study, an airfoil geometry with the NACA 0012 and NACA 4415 series was tested using ANSYS Fluent software at a speed of 200 m/s. To obtain maximum performance in this geometry, a variation of the angle of attack from 0° to 20°, was given so that the lift and drag force were obtained from each angle of attack. From the simulation and calculation results, the highest lift coefficient and drag coefficient in the NACA 0012 Airfoil simulation are at an angle of attack of 20°, is 0.5106 and 0.07829. Meanwhile, in the NACA 4415 Airfoil simulation, the highest lift coefficient is at an angle of attack of 20°, is 0.64623 and 0.08238.
Keywords
Full Text:
PDFReferences
K. A. Othman and A. S. M. Al-Obaidi, “Effect of the wing airfoil shape on the aerodynamics and performance of a jet-trainer aircraft – An optimization approach,” J Phys Conf Ser, vol. 2120, no. 1, p. 012011, Dec. 2021, doi: 10.1088/1742-6596/2120/1/012011.
S. N. V. Neigapula, S. P. Maddula, and V. B. Nukala, “A study of high lift aerodynamic devices on commercial aircrafts,” Aviation, vol. 24, no. 3, pp. 123–136, Sep. 2020, doi: 10.3846/AVIATION.2020.12815.
N. R. Kluga, “A Study of Flap Management, an Analysis of the Consequences of Flap Management, and a Search for Possible Causes,” Journal of Aviation/Aerospace Education & Research, vol. 1, no. 3, p. 1, 1991, doi: 10.15394/jaaer.1991.1026.
M. Pane, “Wing Simulation Using Naca 2412 and 2415 Airfoils with Variations in Angle of Attack for Lift and Drag,” VANOS Journal of Mechanical Engineering Education, vol. 8, no. 2, pp. 190–199, Nov. 2023, doi: 10.30870/VANOS.V8I2.22321.
T. Batu et al., “Optimal airfoil selection for small horizontal axis wind turbine blades: a multi-criteria approach,” Advances in Mechanical and Materials Engineering, vol. Vol. 41, no. nr 1, pp. 57–68, 2024, doi: 10.7862/RM.2024.6.
A. Tokul and U. Kurt, “Comparative performance analysis of NACA 2414 and NACA 6409 airfoils for horizontal axis small wind turbine,” International Journal of Energy Studies, vol. 8, no. 4, pp. 879–898, Dec. 2023, doi: 10.58559/IJES.1356955.
C. Lai, B. Ren, and Y. Zhou, “Influence of wing angle of attack and relative position on the aerodynamics of aerotrain,” Advances in Mechanical Engineering, vol. 9, no. 8, pp. 1–12, Aug. 2017, doi: 10.1177/1687814017719220/ASSET/DCC1F28C-16F2-4F9D-B2BD-002DA4C2144F/ASSETS/IMAGES/LARGE/10.1177_1687814017719220-FIG23.JPG.
S. Kumar and S. Narayanan, “Airfoil thickness effects on flow and acoustic characteristics,” Alexandria Engineering Journal, vol. 61, no. 6, pp. 4679–4699, Jun. 2022, doi: 10.1016/J.AEJ.2021.10.022.
K. E. Swalwell, J. Sheridan, and W. H. Melbourne, “Frequency analysis of surface pressures on an airfoil after stall,” 21st AIAA Applied Aerodynamics Conference, 2003, doi: 10.2514/6.2003-3416.
Z. Liu, A. Li, X. Xu, and R. Gao, “Computational Fluid Dynamics Simulation of Airflow Patterns and Particle Deposition Characteristics in Children Upper Respiratory Tracts,” Engineering Applications of Computational Fluid Mechanics, vol. 6, no. 4, pp. 556–571, 2012, doi: 10.1080/19942060.2012.11015442.
J. Wild, “High-lift aerodynamics,” High-Lift Aerodynamics, pp. 1–307, Feb. 2022, doi: 10.1201/9781003220459/HIGH-LIFT-AERODYNAMICS-JOCHEN-WILD/ACCESSIBILITY-INFORMATION.
C. P. van Dam, “The aerodynamic design of multi-element high-lift systems for transport airplanes,” Progress in Aerospace Sciences, vol. 38, no. 2, pp. 101–144, Feb. 2002, doi: 10.1016/S0376-0421(02)00002-7.
M. Pane, “Simulasi Sayap Menggunakan Airfoil NACA 0008 dan 0010 dengan Variasi Sudut Serang terhadap Gaya Angkat dan Gaya Dorong,” J-Proteksion: Jurnal Kajian Ilmiah dan Teknologi Teknik Mesin, vol. 8, no. 1, pp. 7–11, Aug. 2023, doi: 10.32528/JP.V8I1.444.
M. Pane, “Wing Simulation Using Naca 0018 and 0024 and Aluminum Alloy 7075 T6-SN and 7050-T7451 Materials for Lift and Drag,” JOURNAL OF MECHANICAL ENGINEERING MANUFACTURES MATERIALS AND ENERGY, vol. 8, no. 2, pp. 191–200, Nov. 2024, doi: 10.31289/JMEMME.V8I2.13164.
A. Basit, R. Septian Hidayatuloh, and M. Royana, “Aerodynamic analysis and car body optimalization of saving energy ‘WARAK’ using software Ansys Fluent R15.0,” IOP Conf Ser Mater Sci Eng, vol. 788, no. 1, p. 012073, Apr. 2020, doi: 10.1088/1757-899X/788/1/012073.
T. Putranto and A. Sulisetyono, “Lift-Drag Coefficient and Form Factor Analyses of Hydrofoil due to The Shape and Angle of Attack,” International Journal of Applied Engineering Research, vol. 12, pp. 11152–11156, 2017, Accessed: Mar. 12, 2025. [Online]. Available: http://www.ripublication.com
K. S. Nandini, K. N. Subhashini, and V. Somashekar, “Experimental Investigations of Aerodynamic Performances of S9023 Airfoil,” IOP Conf Ser Mater Sci Eng, vol. 376, no. 1, p. 012060, Jun. 2018, doi: 10.1088/1757-899X/376/1/012060.
M. R. Al Faris, T. Priangkoso, and D. Darmanto, “VISUALISASI PENGARUH SUDUT SERANG DAN KECEPATAN ALIRAN UDARA TERHADAP STALL AIRFOIL NACA 2415 DAN NACA 4424,” JURNAL ILMIAH MOMENTUM, vol. 16, no. 1, Apr. 2020, doi: 10.36499/MIM.V16I1.3362.
H. Wibowo, “Pengaruh Sudut Serang Aerofoil Terhadap Distribusi Tekanan dan Gaya Angkat,” JURNAL DINAMIKA VOKASIONAL TEKNIK MESIN, vol. 2, no. 2, p. 148, Oct. 2017, doi: 10.21831/DINAMIKA.V2I2.15999.
“NACA 4 digit Airfoil database search.” Accessed: Mar. 12, 2025. [Online]. Available: http://airfoiltools.com/search/index?m%5Bgrp%5D=naca4d&m%5Bsort%5D=1
R. Shaheed, A. Mohammadian, and H. Kheirkhah Gildeh, “A comparison of standard k–ε and realizable k–ε turbulence models in curved and confluent channels,” Environmental Fluid Mechanics, vol. 19, no. 2, pp. 543–568, Apr. 2019, doi: 10.1007/S10652-018-9637-1/METRICS.
T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu, “A New K-epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation,” 1994.
M. T. Hamisu, M. M. Jamil, U. S. Umar, and A. Sa’ad, “Numerical Study Of Flow In Asymmetric 2D Plane Diffusers With Different Inlet Channel Lengths,” CFD Letters, vol. 11, no. 5, pp. 1–21, 2019, Accessed: May 09, 2025. [Online]. Available: https://akademiabaru.com/submit/index.php/cfdl/article/view/3159
G. S. Samy, S. Thirumalai Kumaran, M. Uthayakumar, M. Sivasubramanian, and K. Bhagavathi Sankar, “Numerical analysis of drag and lift coefficient of a Sport Utility Vehicle (SUV),” J Phys Conf Ser, vol. 1276, no. 1, p. 012013, Aug. 2019, doi: 10.1088/1742-6596/1276/1/012013.
D. Eller and S. Heinze, “Approach to Induced Drag Reduction with Experimental Evaluation,” https://doi.org/10.2514/1.11713, vol. 42, no. 6, pp. 1478–1485, May 2012, doi: 10.2514/1.11713.
A. A. Kharisma, A. Rahman, A. Ramadhan, and B. Amanda, “Pengaruh Variasi Kecepatan Udara Pada Airfoil NACA 2412 Terhadap Distribusi Tekanan Pada Open Circuit Low Subsonic Wind Tunnel,” Jurnal Teknik Mesin Indonesia, vol. 19, no. 2, pp. 21–31, Sep. 2024, doi: 10.36289/JTMI.V19I02.627.
M. Sandesh, K. Rasal, M. Rohan, and R. Katwate, “Numerical Analysis of Lift & Drag Performance of NACA0012 Wind Turbine Aerofoil,” International Research Journal of Engineering and Technology, 2017, Accessed: May 09, 2025. [Online]. Available: www.irjet.net
M. Manikandan and R. S. Pant, “Research and advancements in hybrid airships—A review,” Progress in Aerospace Sciences, vol. 127, Nov. 2021, doi: 10.1016/j.paerosci.2021.100741.
R. D. Novianti, S. Hariyadi, S. Putro, and N. Pambudiyatno, “ANALISIS AERODINAMIKA PENGGUNAAN PLAIN FLAP PADA AIRFOIL NACA 2412,” Approach : Jurnal Teknologi Penerbangan, vol. 6, no. 1, pp. 12–17, 2022, doi: 10.46491/APPROACH.V6I1.1784.
M. Zhao, H. Cao, and M. Zhang, “Analysis of various NACA airfoil and fabrication of wind tunnel to test the scaled-down model of an airfoil Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations”, doi: 10.1088/1757-899X/1130/1/012021.
A. Akbar, “Effect of Angle of Attack on Airfoil NACA 0012 Performance,” R.E.M. (Rekayasa Energi Manufaktur) Jurnal, vol. 5, no. 1, pp. 35–40, Jun. 2020, doi: 10.21070/R.E.M.V5I1.1235.
H. Zhang et al., “Lift and Drag Coefficient Map of NACA4415 Airfoil,” J Phys Conf Ser, vol. 2076, no. 1, p. 012066, Nov. 2021, doi: 10.1088/1742-6596/2076/1/012066.
DOI: http://dx.doi.org/10.30870/vanos.v10i1.31929
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.