Characteristics of Pin Profile Variations in Friction Stir Welding (FSW) Joints of High Density Polyethylene (HDPE) And Polypropylene (PP) on Mechanical Properties

Risky Ramadhani, Febri Budi Darsono, Aldias Bahatmaka, Kriswanto Kriswanto, Tegar Oki Prasdika, Salsa Bila Azara

Abstract


In the Friction Stir Welding (FSW) process, the pin profile is one of the key factors in determining the quality of the joint because it directly affects the material flow in the joint area and the heat distribution generated during welding. Therefore, this study aims to determine the characteristics of pin profile variations in high-density polyethylene (HDPE)-polypropylene (PP) joints. Three types of pin profiles were used: threaded cylindrical pins, triangular pins, and grooved tapered cylindrical pins. The feed rate was 15 mm/min, the feed depth was 3.96 mm, and the rotating speed was 930 rpm. Hardness, tensile, bending, and macro-photo tests were conducted to determine the mechanical properties of the joints. The results showed that the grooved tapered cylindrical profile pin obtained the highest average value for hardness at 62.7 SHD, and tensile strength at 11.1 MPa. The lowest average values were obtained for the threaded cylindrical profile pins at 61.6 SHD, and 4.2 MPa. Flexural strength with the highest average value of 13.9 MPa was obtained for the triangular profile pin, while the lowest average value of 4.9 MPa was obtained for the threaded cylindrical profile pin. The strength test results, and macro photographs show that the shape and design of the profile pins play an important role in heat generation through friction as well as the control of material flow dynamics, which directly determines the structural integrity and mechanical properties of the joint.


Keywords


Poolymer, Friction Stir Welding, Welding, Butt Joint

Full Text:

PDF

References


N. Anaç, “The mechanical properties of dissimilar/similar polymer materials joined by friction stir welding,” Heliyon, vol. 9, no. 7, Jul. 2023, doi: 10.1016/j.heliyon.2023.e17627.

F. Paundra, A. Nurdin, and H. Abdillah, “Analysis of the Effect of Blade Thickness on Propeller Water Turbine Performance Using Computational Fluid Dynamic,” VANOS Journal Of Mechanical Engineering Education, vol. 7, no. 1, pp. 91–99, May 2022, [Online]. Available: http://jurnal.untirta.ac.id/index.php/vanos

A. Kumar Sharma, R. Bhandari, C. Sharma, S. Krishna Dhakad, and C. Pinca-Bretotean, “Polymer matrix composites: A state of art review,” Mater Today Proc, vol. 57, pp. 2330–2333, Jan. 2022, doi: 10.1016/j.matpr.2021.12.592.

M. S. Sarfraz, H. Hong, and S. S. Kim, “Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study,” Jun. 15, 2021, Elsevier Ltd. doi: 10.1016/j.compstruct.2021.113864.

A. K. R. Sharma, M. Roy Choudhury, and K. Debnath, “Experimental investigation of friction stir welding of PLA,” Welding in the World, vol. 64, no. 6, pp. 1011–1021, Jun. 2020, doi: 10.1007/s40194-020-00890-7.

A. Zafar, M. Awang, and S. R. Khan, “Friction Stir Welding of Polymers: An Overview,” 2017, pp. 19–36. doi: 10.1007/978-981-10-4232-4_2.

R. B. Azhiri, J. F. Sola, R. M. Tekiyeh, F. Javidpour, and A. S. Bideskan, “Analyzing of joint strength, impact energy, and angular distortion of the ABS friction stir welded joints reinforced by nanosilica addition,” The International Journal of Advanced Manufacturing Technology, vol. 100, no. 9–12, pp. 2269–2282, Feb. 2019, doi: 10.1007/s00170-018-2761-8.

H. A. Derazkola, A. Eyvazian, and A. Simchi, “Modeling and experimental validation of material flow during FSW of polycarbonate,” Mater Today Commun, vol. 22, Mar. 2020, doi: 10.1016/j.mtcomm.2019.100796.

R. Rudrapati, “Effects of welding process conditions on friction stir welding of polymer composites: A review,” Aug. 01, 2022, Elsevier B.V. doi: 10.1016/j.jcomc.2022.100269.

A. Muchhadiya et al., “Optimization of friction stir welding process parameters for HDPE sheets using satisfaction function approach,” Indian Journal of Engineering and Materials Sciences, vol. 31, no. 1, pp. 58–66, Feb. 2024, doi: 10.56042/ijems.v31i1.561.

L. R. R. Silva, E. A. S. Marques, and L. F. M. da Silva, “Polymer joining techniques state of the art review,” Welding in the World, vol. 65, no. 10, pp. 2023–2045, Oct. 2021, doi: 10.1007/s40194-021-01143-x.

A. Alhourani, J. Sheikh-Ahmad, F. Almaskari, K. Khan, S. Deveci, and I. Barsoum, “Thermal modeling of friction stir welding of thick high-density polyethylene plates,” Journal of Materials Research and Technology, vol. 28, pp. 4186–4198, Jan. 2024, doi: 10.1016/j.jmrt.2024.01.044.

A. W. Nugroho, A. Arifin, M. R. Imbaraga, and M. B. N. Rahman, “The Effect of Tool Rotational Speed and Welding Configuration on the Mechanical Properties of High Density Polyethylene (HDPE) Plate Friction Stir Welded Joint,” Semesta Teknika, vol. 27, no. 1, pp. 66–80, May 2024, doi: 10.18196/st.v27i1.22182.

M. A. R. Pereira, A. M. Amaro, P. N. B. Reis, and A. Loureiro, “Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency—A Critical Review,” Polymers (Basel), vol. 13, no. 13, p. 2056, Jun. 2021, doi: 10.3390/polym13132056.

F. Lambiase, H. A. Derazkola, and A. Simchi, “Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art,” Materials, vol. 13, no. 10, p. 2291, May 2020, doi: 10.3390/ma13102291.

S. Attarilar et al., “The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective,” Jul. 17, 2020, Frontiers Media S.A. doi: 10.3389/fbioe.2020.00822.

S. A. Al, K. Abdullah, N. Shakir Azeez, and A. K. Jassim, “Effect of Friction Stir Welding Parameters on the Mechanical Properties of Dissimilar Polymer Joints,” Mar. 2023. doi: https://www.journalofbabylon.com/index.php/JUB/issue/archive.

Y. Huang et al., “Friction stir welding/processing of polymers and polymer matrix composites,” Compos Part A Appl Sci Manuf, vol. 105, pp. 235–257, Feb. 2018, doi: 10.1016/j.compositesa.2017.12.005.

A. Zafar, M. Awang, S. Raza Khan Helmholtz-Zentrum Hereon, and S. Emamian, “Investigating Friction Stir Welding on Thick Nylon 6 Plates.” [Online]. Available: https://www.researchgate.net/publication/303450363

M. Hanif Firmansyah, “Influence of Parameters on the Mechanical Strength of Friction Stir Welding in High Density Polyethylene [Pengaruh Parameter terhadap Kekuatan Mekanik Pengelasan Friction Stir Welding pada High Density Polyethylene],” 2024.

M. A. R. Pereira, I. Galvão, J. D. Costa, R. M. Leal, and A. M. Amaro, “Joining of Polyethylene Using a Non-Conventional Friction Stir Welding Tool,” Materials, vol. 15, no. 21, Nov. 2022, doi: 10.3390/ma15217639.

Z. C. Nik, M. Ishak, and N. H. Othman, “The Effect of Tool Pin Shape of Friction Stir Welding (FSW) on Polypropylene,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Oct. 2017. doi: 10.1088/1757-899X/238/1/012003.

L. T. Wilkins and A. M. Strauss, “Influence of Tool Thread Pitch During Friction Stir Welding of High-Density Polyethylene Plate,” J Manuf Sci Eng, vol. 144, no. 12, Dec. 2022, doi: 10.1115/1.4055118.

P. Asadi, M. Mirzaei, and M. Akbari, “Modeling of pin shape effects in bobbin tool FSW,” International Journal of Lightweight Materials and Manufacture, vol. 5, no. 2, pp. 162–177, Jun. 2022, doi: 10.1016/j.ijlmm.2021.12.001.

F. Kordestani, F. Ashenai Ghasemi, and N. B. M. Arab, “Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates,” Mechanics of Composite Materials, vol. 53, no. 4, pp. 525–532, Sep. 2017, doi: 10.1007/s11029-017-9682-8.

S. Singh, G. Singh, C. Prakash, and R. Kumar, “On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 4, p. 154, Apr. 2020, doi: 10.1007/s40430-020-2227-4.

M. Rezaee Hajideh, M. Farahani, S. A. D. Alavi, and N. Molla Ramezani, “Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets,” J Manuf Process, vol. 26, pp. 269–279, Apr. 2017, doi: 10.1016/j.jmapro.2017.02.018.

M. A. S. MIRANDA, G. M. D. ALMARAZ, J. J. V. LOPEZ, A. E. DOMINGUEZ, J. A. R. VILCHEZ, and J. C. V. JUAREZ, “Dissimilar Joining of UHWMPE and PP Using Friction Stir Welding (FSW), and Mechanical Properties Evaluation.,” Apr. 08, 2022, Research Square. doi: 10.21203/rs.3.rs-1503428/v1.

M. A. S. Miranda, G. M. D. Almaraz, J. J. V. López, and J. A. R. Vilchez, “Dissimilar joining of ABS and PP using friction stir welding (FSW) and mechanical properties evaluation,” in Procedia Structural Integrity, Elsevier B.V., 2021, pp. 161–172. doi: 10.1016/j.prostr.2022.03.085.

R. K. Nath, V. Jha, P. Maji, and J. D. Barma, “A novel double-side welding approach for friction stir welding of polypropylene plate,” The International Journal of Advanced Manufacturing Technology, vol. 113, no. 3–4, pp. 691–703, Mar. 2021, doi: 10.1007/s00170-021-06602-9.

B. Kusharjanta, R. Soenoko, A. Purnowidodo, and Y. S. Irawan, “Effect of Friction Stir Welding Process on Crystallinity and Degradation of Polypropylene,” Journal of Southwest Jiaotong University, vol. 55, no. 2, 2020, doi: 10.35741/issn.0258-2724.55.2.62.

B. Ahmad, F. Almaskari, J. Sheikh-Ahmad, S. Deveci, and K. Khan, “Thermomechanical Modeling of Material Flow and Weld Quality in the Friction Stir Welding of High-Density Polyethylene,” Polymers (Basel), vol. 15, no. 15, p. 3230, Jul. 2023, doi: 10.3390/polym15153230.

H. I. Khalaf et al., “The Effects of Pin Profile on HDPE Thermomechanical Phenomena during FSW,” Polymers (Basel), vol. 14, no. 21, Nov. 2022, doi: 10.3390/polym14214632.

S. H. Iftikhar, A. H. I. Mourad, J. Sheikh-Ahmad, F. Almaskari, and S. Vincent, “A comprehensive review on optimal welding conditions for friction stir welding of thermoplastic polymers and their composites,” Apr. 02, 2021, MDPI AG. doi: 10.3390/polym13081208.

V. K. Mahakur, K. Gouda, P. K. Patowari, and S. Bhowmik, “A Review on Advancement in Friction Stir Welding Considering the Tool and Material Parameters,” Arab J Sci Eng, vol. 46, no. 8, pp. 7681–7697, Aug. 2021, doi: 10.1007/s13369-021-05524-8.

T. Suwanda and N. Ardiyansyah, “Pengaruh Variasi Kecepatan Putar dan Diameter Pin Tools Terhadap Kuat Geser dan Struktur Makro Sambungan Friction Stir Welding Dissimilar High Density Polyetylene-Polypropylene,” Jurnal Rekayasa Mesin, vol. 14, no. 3, pp. 869–877, Dec. 2023, doi: 10.21776/jrm.v14i3.1376.

A. I. Albannai, “Review The Common Defects In Friction Stir Welding,” INTERNATIONAL JOURNAL OF SCIENTIFIC, vol. 9, no. 11, pp. 1–12, Nov. 2020, [Online]. Available: www.ijstr.org

Nur Ardiyansyah, Totok Suwanda, Fitroh Anugrah Kusuma Yudha, and Adi Purnama, “Effect of feed rate on shear strength and macrostructure of friction stir welding dissimilar high-density polyethylene-polypropylene joint,” Jurnal Polimesin, vol. 22, pp. 416–419, Aug. 2024.

Muhammad and Geriko, “Pengaruh Kecepatan Putar Pin Tool Terhadap Sifat Meknik Pada Pengelasan Friction Stir Welding Polypropylene (PP),” FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA, pp. 1–10, Jun. 2019.




DOI: http://dx.doi.org/10.30870/vanos.v10i1.32501

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License