Green Synthesis and Characterization of Cinnamylideneacetophenone Compound Using Fe3O4 Magnetic as Catalyst
Abstract
Keywords
Full Text:
PDFReferences
Benelli, G. (2019). Green synthesis of nanomaterials. Nanomaterials, 9(1257), 1–3. https://doi.org/10.3390/nano11082130
Cahyana, A., Fitria, D., Ardiansah, B., & Rahayu, D. (2017). Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis. Journal of Physics: Conference Series, 188(012026), 1–5. https://doi.org/10.1088/1742-6596/755/1/011001
Cahyana, A. H., Liandi, A. R., Yunarti, R. T., Febriantini, D., & Ardiansah, B. (2019). Green synthesis of dihydropyrimidine based on cinnamaldehyde compound under solvent-free using graphene oxide as catalyst. AIP Conference Proceedings, 2168(November). https://doi.org/10.1063/1.5132496
Chng, L. L., Erathodiyil, N., & Ying, J. Y. (2013). Nanostructured catalysts for organic transformations. Accounts of Chemical Research, 46(8), 1825–1837. https://doi.org/10.1021/ar300197s
El-Kassas, H. Y., Aly-Eldeen, M. A., & Gharib, S. M. (2016). Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: Characterization and application for lead bioremediation. Acta Oceanologica Sinica, 35(8), 89–98. https://doi.org/10.1007/s13131-016-0880-3
Fierascu, R. C., Ortan, A., Avramescu, S. M., & Fierascu, I. (2019). Phyto-nanocatalysts: Green synthes is characterization, and applications. Molecules, 24(19), 1–35. https://doi.org/10.3390/molecules24193418
Jo, Y. J., Chun, J. Y., Kwon, Y. J., Min, S. G., Hong, G. P., & Choi, M. J. (2015). Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice. Lwt, 60(1), 444–451. https://doi.org/10.1016/j.lwt.2014.09.041
Khalaj, M., Kamali, M., Costa, M. E. V., & Capela, I. (2020). Green synthesis of nanomaterials - A scientometric assessment. Journal of Cleaner Production, 267, 122036. https://doi.org/10.1016/j.jclepro.2020.122036
Kharisov, B. I., Dias, H. V. R., & Kharissova, O. V. (2019). Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7), 1234–1246. https://doi.org/10.1016/j.arabjc.2014.10.049
Liandi, A. R., Yunarti, R. T., Nurmawan, M. F., & Cahyana, A. H. (2020). The Utilization of Fe3O4 nanocatalyst in modifying cinnamaldehyde compound to Synthesis 2-amino-4H-chromene derivative. Materials Today: Proceedings, 22, 193–198. https://doi.org/10.1016/j.matpr.2019.08.087
Mahdavi, M., Ahmad, M. Bin, Haron, M. J., Namvar, F., Nadi, B., Ab Rahman, M. Z., & Amin, J. (2013). Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533–7548. https://doi.org/10.3390/molecules18077533
Mahdavian, A. R., & Mirrahimi, M. A. S. (2010). Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal, 159(1–3), 264–271. https://doi.org/10.1016/j.cej.2010.02.041
Mahmoud, M. E., Abdou, A. E. H., & Nabil, G. M. (2015). Facile microwave-assisted fabrication of nano-zirconium silicate-functionalized-3-aminopropyltrimethoxysilane as a novel adsorbent for superior removal of divalent ions. Journal of Industrial and Engineering Chemistry, 32, 365–372. https://doi.org/10.1016/j.jiec.2015.09.005
Nasir Baig, R. B., Nadagouda, M. N., & Varma, R. S. (2015). Magnetically retrievable catalysts for asymmetric synthesis. Coordination Chemistry Reviews, 287, 137–156. https://doi.org/10.1016/j.ccr.2014.12.017
Rajendaran, K., Muthuramalingam, R., & Ayyadurai, S. (2019). Green synthesis of Ag-Mo/CuO nanoparticles using Azadirachta indica leaf extracts to study its solar photocatalytic and antimicrobial activities. Materials Science in Semiconductor Processing, 91(September 2018), 230–238. https://doi.org/10.1016/j.mssp.2018.11.021
Sadjadi, S., Malmir, M., & Heravi, M. M. (2017). A green approach to the synthesis of Ag doped nano magnetic γ-Fe2O3@SiO2-CD core-shell hollow spheres as an efficient and heterogeneous catalyst for ultrasonic-assisted A3 and KA2 coupling reactions. RSC Advances, 7(58), 36807–36818. https://doi.org/10.1039/c7ra04635a
Salem, D. M. S. A., Ismail, M. M., & Aly-Eldeen, M. A. (2019). Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Research, 45(3), 197–204. https://doi.org/10.1016/j.ejar.2019.07.002
Wang, H., Yuan, H., Li, S., Li, Z., & Jiang, M. (2016). Synthesis, antimicrobial activity of Schiff base compounds of cinnamaldehyde and amino acids. Bioorganic and Medicinal Chemistry Letters, 26(3), 809–813. https://doi.org/10.1016/j.bmcl.2015.12.089
Yen, T. B., & Chang, S. T. (2008). Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi. Bioresource Technology, 99(1), 232–236. https://doi.org/10.1016/j.biortech.2006.11.022
Yew, Y. P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N. B., Bt Mohamad, S. E., & Lee, K. X. (2016). Green Synthesis of Magnetite (Fe3O4) Nanoparticles Using Seaweed (Kappaphycus alvarezii) Extract. Nanoscale Research Letters, 11(1). https://doi.org/10.1186/s11671-016-1498-2
DOI: http://dx.doi.org/10.30870/educhemia.v6i2.10412
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 dori fitria
This work is licensed under a Creative Commons Attribution 4.0 International License.
EduChemia: Jurnal Kimia dan Pendidikan is licensed under a Creative Commons Attribution 4.0 International License
________________________________________________________
EduChemia: Jurnal Kimia dan Pendidikan ISSN 2502-4779 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email : [email protected]