Preparation of TiO2 Nanotube Using Anodization Method: Charactherization and Its Application for CO Sensor

Harry Budiman, Rahmat Wibowo, Oman Zuas, Jarnuzi Gunlazuardi

Abstract


Preparation of highly ordered TiO2 nanotube arrays (HOTNAs) by anodization of Ti foil industrial grade in ethylene glycol electrolyte containing 0.3% of ammonium fluoride and 2% of water at 30 V for 90 minutes was conducted. The morphology structure, chemical composition, functional group, crystal phase, and optical properties of HOTNAs were characterized by field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray (EDX),Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), and ultraviolet visible diffuse reflectance spectroscopy (UV/Vis-DRS). The well-ordered nanotube with vertically oriented structure was formed in the HOTNAs having  size in diameter, length, and wall thickness of  48,0 nm, 1,8 µm, and 26,7 nm, respectively. The fabricated HOTNAs were evaluated for their sensing properties for CO detection.  The results show that the fabricated HOTNAs were able to detect 2500 ppm of CO gas with response about 93,429 at operation temperature 150 °C. This preliminary study of sensing performance demonstrates that the prepared HOTNAs under this study is potential and promising as a material sensor for CO detection.


Keywords


HOTNAs; anodization; carbon monoxide; gas sensor

Full Text:

PDF

References


Ali, G., Kim, H. J., Kim, J. J., & Cho, S. O. (2014). Controlled fabrication of porous double-walled TiO 2 nanotubes via ultraviolet-assisted anodization†. Nanoscale, 6, 3632–3637. https://doi.org/10.1039/c3nr05894h

Chang, M., Song, Y., Zhang, H., Sheng, Y., Zheng, K., Zhou, X., & Zou, H. (2015). Hydrothermal assisted sol-gel synthesis and multisite luminescent properties of anatase TiO2:Eu3+ nanorods. RSC Advances. https://doi.org/10.1039/b000000x

Chen, N., Deng, D., Li, Y., Xing, X., & Liu, X. (2016). The xylene sensing performance of WO3 decorated anatase TiO2 nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Advances, 6, 49692–49701. https://doi.org/10.1039/C6RA09195D

Felita, B., Riyanto, C. A., & Martono, Y. (2021). Activated Carbon From Plantain Stems as NO2ˉ and Mn2+ Adsorbent on Well Water. EduChemia, 6(1), 38–54. https://doi.org/10.30870/educhemia.v6i1.8887

Hazra, A., & Bhattacharyya, P. (2014). Tailoring of the Gas Sensing Performance of TiO2 Nanotubes by 1-D Vertical Electron. IEE Transactions on Electronic Devices, 61(10), 3483–3489.

Hosoya, A. (2013). Low-temperature-operative Carbon Monoxide Gas Sensor with Novel CO Oxidizing Catalyst. Chemical Letters, 42, 441–443. https://doi.org/10.1246/cl.130055

Jin, R., Liao, M., Lin, T., Zhang, S., Shen, X., Song, Y., & Zhu, X. (2017). Formation and evolution of anodic TiO2 nanotube embryos. Materials Research Express, 4(6).

Joseph, S., & Sagayaraj, P. (2015). A cost effective approach for developing substrate stable TiO2 nanotube arrays with tuned morphology : a comprehensive study on the role of H2O2 and anodization potential. New Journal of Chemistry, 39(7), 5402–5409. https://doi.org/10.1039/C5NJ00565E

Lai, C. W., & Sreekantan, S. (2012). Photoelectrochemical Performance of Smooth TiO 2 Nanotube Arrays : Effect of Anodization Temperature and Cleaning Methods. International Journal of Photoenergy, 2012, 1–11. https://doi.org/10.1155/2012/356943

Lee, K., Kim, D., Roy, P., Paramasivam, I., & Birajdar, B. I. (2010). Anodic Formation of Thick Anatase TiO2 Mesosponge Layers for High-Efficiency Photocatalysis. Journal American Chmeical Society, 132(5), 1478–1479.

Liu, J., Li, S., Zhang, B., Xiao, Y., Gao, Y., Yang, Q., … Lu, G. (2017). Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sensors and Actuators B :, 249, 715–724.

Molavi, R., & Sheikhi, M. H. (2018). Low temperature carbon monoxide gas sensor based on Ag-Co3O4 thick film nanocomposite. Materials Letters, 233(3), 74–77. https://doi.org/10.1016/j.matlet.2018.08.087

Pozos, H. G., Krishna, K. T. V., Amador, M. D. L. O., Kudriavtsev, Y., & Alvarez, A. M. (2018). TiO2 thin film based gas sensors for CO-detection. Journal of Materials Science: Materials in Electronics, 29(18), 15829–15837. https://doi.org/10.1007/s10854-018-9477-2

Roy, P., Berger, S., & Schmuki, P. (2011). TiO 2 Nanotubes : Synthesis and Applications Angewandte. Angewandte Chemie (International Ed. in English), 50, 2904–2939. https://doi.org/10.1002/anie.201001374

Smith, Y. R., Ray, R. S., Carlson, K., Sarma, B., & Misra, M. (2013). Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications. Materials, 6, 2892–2957. https://doi.org/10.3390/ma6072892

So, S., Riboni, F., Hwang, I., Paul, D., Hammond, J., Tomanec, O., … Schmuki, P. (2017). Electrochimica Acta The double-walled nature of TiO 2 nanotubes and formation of tube-in -tube structures – a characterization of different tube morphologies. Electrochimica Acta, 231, 721–731.

Song, J., Zheng, M., Zhang, B., Li, Q., Wang, F., Ma, L., & Li, Y. (2017). Fast Growth of Highly Ordered TiO 2 Nanotube Arrays on Si Substrate under High-Field Anodization. Nano Micro Letters, 9(13), 1–11. https://doi.org/10.1007/s40820-016-0114-4

Su, J., Zou, X., Zou, Y., Li, G., Wang, P., & Chen, J. (2013). Porous Titania with Heavily Self-Doped Ti3+ for Specific Sensing of CO at room temperature. Inorganic Chemistry, 52(10), 5924–5930.

Tan, J., Wlodarski, W., Kalantar-zadeh, K., & Livingston, P. (2006). Carbon Monoxide Gas Sensor Based on Titanium Dioxide Nanocrystalline with a Langasite Substrate. IEEE Sensors Journal, 228–231.

Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10, 2088–2106. https://doi.org/10.3390/s100302088

Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., … Phanichphant, S. (2011). Chemical Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors & Actuators: B. Chemical, 160(1), 580–591. https://doi.org/10.1016/j.snb.2011.08.032

Zhang, Y., Zeng, W., Ye, H., & Li, Y. (2018). Enhanced Carbon Monoxide Sensing Properties of TiO 2 with Exposed ( 001 ) facet : A Combined First-principle and Experimental Study. Applied Surface Science, (1). https://doi.org/10.1016/j.apsusc.2018.02.036

Zuas, O., & Hamim, N. (2013). Synthesis , Characterization and Properties of CeO 2 -doped TiO 2 Composite Nanocrystals. Materials Science, 19(4), 443–447.




DOI: http://dx.doi.org/10.30870/educhemia.v6i2.10793

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Harry Budiman

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

    

             

                                                                                                                                                                                      More Indecxing... 

 

Creative Commons License

EduChemia (Jurnal Kimia dan Pendidikan) is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia (Jurnal Kimia dan Pendidikan) ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : educhemia@untirta.ac.id