Thermal Stability Analysis of Cellulose From Sago Fiber Waste (Metroxylon sago)

Nurmalasari Nurmalasari, Sastriana Jaya Lestari, Mimi Syamsuddin, Sukarti Sukarti, Muhammad Nur Alam

Abstract


Sago pulp is a lignocellulosic waste rich in cellulose, so that it can be used optimally as a source of carbon and cellulose. Fixed carbon can be obtained maximally by determining the carbonization temperature. This research aims to determine the temperature of the cellulose sample starting to decompose and the energy required at the time of decomposition. The process of extracting cellulose from sago fiber waste uses NaOH alkalinization for delignification, bleaching with H2O2, and hydrolysis with HCl. Identification of lignin in sago fiber is known by the appearance of the C=O group in the wave region of 1734.01 cm-1 with strong intensity; after extraction, no peak number was found in the extracted cellulose FTIR spectrum. TGA analysis of cellulose underwent two stages of mass change, the first stage of decomposition of water molecules at a temperature of 47°C-203°C obtained a mass decrease of 5.69%, and the second stage of decomposition at a temperature of 287°C-397°C obtained a mass decrease of 58.95%. DSC analysis obtained two thermal properties of physical changes contained in two endothermic peaks, the first peak of water evaporation which required energy of 28,1120 J/g, and the second peak of decomposition, which required energy of 9.6188 J/g.

Keywords


Cellulose; Extraction; FTIR; TGA; DSC

Full Text:

PDF

References


Alothman, O.Y., Kian, L.K., Saba, N., Jawaid, M., Khiari, R., 2021. Cellulose nanocrystal extracted from date palm fibre: Morphological, structural and thermal properties. Ind. Crops Prod. 159, 113075.

Amin, N., Sabli, N., Izhar, S., Yoshida, H., 2019. Sago wastes and its applications. Pertanika J. Sci. Technol. 27, 1841–1862.

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T., 2017. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63.

Cichosz, S., Masek, A., 2019. Cellulose Fibers Hydrophobization via a Hybrid Chemical Modification. Polym. 2019, Vol. 11, Page 1174 11, 1174.

Ernawati, E., Lakare, H., Diansari, P., 2018. Peranan Makanan Tradisional Berbahan Sagu sebagai Alternatif Dalam Pemenuhan Gizi Masyarakat. J. Sos. Ekon. Pertan. 14, 31–40.

Foadieng, E., Talla, P.K., Nkamgang, G.B., Fogue, M., 2017. Study of the Thermal Properties of Raffia Bamboo Vinifera L. Arecaceae. Adv. Mater. Sci. Eng. 2017.

Jandura, P., Riedl, B., Kokta, B. V., 2000. Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym. Degrad. Stab. 3, 387–394.

Joseph, P. V., Joseph, K., Thomas, S., Pillai, C.K.S., Prasad, V.S., Groeninckx, G., Sarkissova, M., 2003. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 34, 253–266.

Kinney, T.J., Masiello, C.A., Dugan, B., Hockaday, W.C., Dean, M.R., Zygourakis, K., Barnes, R.T., 2012. Hydrologic properties of biochars produced at different temperatures. Biomass and Bioenergy 41, 34–43.

Lamaming, J., Hashim, R., Leh, C.P., Sulaiman, O., Sugimoto, T., Nasir, M., 2015. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). Carbohydr. Polym. 134, 534–540.

Lim, J.K., 2006. Preparation and Characterization of Carboxymethyl Sago Waste and its Hydrogel.

Madhu, P., Sanjay, M.R., Pradeep, S., Subrahmanya Bhat, K., Yogesha, B., Siengchin, S., 2019. Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites. J. Mater. Res. Technol. 8, 2597–2604.

Mulyasari, A., Kimia, S., Sains, F., Palopo, U.C., Selatan, S., 2020. Analisis proksimat karbon aktif limbah serat sagu teraktivasi koh 1. Cokroaminoto J. Chem. Sci. 2, 20–22.

Naduparambath, S., T.V., J., Shaniba, V., M.P., S., Balan, A.K., Purushothaman, E., 2018. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr. Polym. 180, 13–20.

Ngaini, Z., Noh, F., Wahi, R., 2014. Esterified sago waste for engine oil removal in aqueous environment. http://dx.doi.org/10.1080/09593330.2014.920051 35, 2761–2766.

Ngaini, Z., Noh, F., Wahi, R., 2018. Facile sorbent from esterified cellulosic sago waste for engine oil removal in marine environment. Int. J. Environ. Sci. Technol. 15, 341–348.

Nguyen, P.X.T., Ho, K.H., Do, N.H.N., Nguyen, C.T.X., Nguyen, H.M., Tran, K.A., Le, K.A., Le, P.K., 2022. A comparative study on modification of aerogel-based biosorbents from coconut fibers for treatment of dye- and oil-contaminated water. Mater. Today Sustain. 19, 100175.

Plis, A., Lasek, J.A., Zuwała, J., Yu, C.C., Iluk, A., 2016. Combustion performance evaluation of Posidonia oceanica using TGA and bubbling fluidized-bed combustor (batch reactor). J. Sustain. Min. 15, 181–190.

Poletto, M., Ornaghi Júnior, H.L., Zattera, A.J., 2014. Native Cellulose: Structure, Characterization and Thermal Properties. Mater. (Basel, Switzerland) 7, 6105–6119.

Pratiwi, S.W., Sari, S.N., Nurmalasari, R., Indriani, M., 2020. Utilization of Nata De Coco as Adsorben in Methyl Orange Adsorption. EduChemia (Jurnal Kim. dan Pendidikan) 5, 187.

Quan, C., Gao, N., Song, Q., 2016. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. J. Anal. Appl. Pyrolysis 121, 84–92.

Tabugon, H.C., Oracion, J.P.L., De La Rosa, L.B., Grumo, J.C., Alguno, A.C., Deocaris, C.C., Capangpangan, R.Y., 2021. Synthesis and characterization of cellulose nanocrystals extracted from sago (Methoxylon sagu) pulp. AIP Conf. Proc. 2370, 020022.

Ufodike, C.O., Eze, V.O., Ahmed, M.F., Oluwalowo, A., Park, J.G., Liang, Z., Wang, H., 2020. Investigation of molecular and supramolecular assemblies of cellulose and lignin of lignocellulosic materials by spectroscopy and thermal analysis. Int. J. Biol. Macromol. 146, 916–921.

Veeramachineni, A.K., Sathasivam, T., Muniyandy, S., Janarthanan, P., Langford, S.J., Yan, L.Y., 2016. Optimizing extraction of cellulose and synthesizing pharmaceutical grade carboxymethyl sago cellulose from Malaysian sago pulp. Appl. Sci. 6.

Wahi, R., Chuah Abdullah, L., Nourouzi Mobarekeh, M., Ngaini, Z., Choong Shean Yaw, T., 2017. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. J. Environ. Chem. Eng. 5, 170–177.




DOI: http://dx.doi.org/10.30870/educhemia.v7i2.13491

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Nurmalasari Nurmalasari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

    

             

                                                                                                                                                                                      More Indecxing... 

 

Creative Commons License

EduChemia (Jurnal Kimia dan Pendidikan) is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia (Jurnal Kimia dan Pendidikan) ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : educhemia@untirta.ac.id