Patterns of Students' Macroscopic, Submicroscopic, and Symbolic Representation Ability in Acid-Base Topic

Mujibaturrahmi Mujibaturrahmi, Sri Winarni, Latifah Hanum

Abstract


Abstract concepts of chemicals are generally presented in three chemical representation levels: macroscopic, submicroscopic, and symbolic. This study aims to; (1) evaluate each representation ability; (2) determine how to evaluate the pattern of representational abilities; and (3) evaluate the patterns of each student's macroscopic, submicroscopic, and symbolic representation abilities. Qualitative descriptive has been used as the design of this study. Twenty-one multiple-choice questions based on macroscopic, submicroscopic, and symbolic representations have been designed with validation results from two experts, which are 100% valid, and with the Kuder Richardson formula (K-R 20), the reliability value is 0.84. The subjects in this study were all students of class XI MIPA at SMA Negeri 8 Banda Aceh. The research was conducted online via a google form. The results showed that students with high categories of macroscopic, submicroscopic, and symbolic representation skills were 61, 18, and 51%, respectively. 9.8% of students can master the three levels of representation with high criteria. The pattern of representation ability is mainly owned by 24.4% with high macroscopic and symbolic representation abilities but low submicroscopic representation abilities. Because submicroscopic representation lags macroscopic and symbolic, explanation in chemistry should always involve submicroscopic representations other than macroscopic and symbolic.


Keywords


representation, macroscopic, submicroscopic, symbolic, acid-base

Full Text:

PDF

References


Abdullah, N. et al. 2017. ‘Secondary school students’ alternative frameworks on the concept of condensation at the submicroscopic level’, Man in India, 97(12), pp. 363–373. doi: 10.5539/ies.v9n5p255.

Al-Balushi, S. M. 2013. ‘The effect of different textual narrations on students’ explanations at the submicroscopic level in chemistry’, Eurasia Journal of Mathematics, Science and Technology Education, 9(1), pp. 3–10. doi: 10.12973/eurasia.2013.911a.

Andrade, V. F. De, Freire, S. and Baptista, M. 2020. ‘Constructing Scientific Explanations for Chemical Phenomena through Drawings among 8th-grade Students’, Eurasia Journal of Mathematics, Science and Technology Education, 17(1), pp. 1–13. doi: 10.29333/ejmste/9614.

Aulia, N., Hanum, L. and Mukhlis .2017. ‘Analisis Kemampuan Penyelesaian Soal Kimia Berbasis Makroskopik dan Simbolik pada Materi Hukum Dasar dan Perhitungan Kimia di Kelas X SMA Negeri 1 Indrapuri’, Jurnal Ilmiah mahasiswa Pendidikan Kimia (JIMPK), Vol. 2(No. 4), p. Hal 237-244. Available at: http://www.jim.unsyiah.ac.id/pendidikan-kimia/article/view/5785.

Batlolona, J. R. et al. 2020. ‘Students’ mental models of solid elasticity: Mixed method study’, Journal of Turkish Science Education, 17(2), pp. 200–210. doi: 10.36681/tused.2020.21.

Çelikkıran, A. T. 2020. ‘Examination of Secondary School Students’ Ability to Transform among Chemistry Representation Levels Related to Stoichiometry’, International Journal of Progressive Education, 16(2), pp. 42–55. doi: 10.29329/ijpe.2020.241.4.

Chen, X. et al. 2019. ‘An analysis of the visual representation of redox reactions in secondary chemistry textbooks from different chinese communities’, Education Sciences, 9(1). doi: 10.3390/educsci9010042.

Chittleborough, G. 2014. ‘Learning with Understanding in the Chemistry Classroom’, Learning with Understanding in the Chemistry Classroom, pp. 25–41. doi: 10.1007/978-94-007-4366-3.

Cook, M., Wiebe, E. N. and Carter, G. 2008. ‘The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations’, Science Education, 92(5), pp. 848–867. doi: 10.1002/sce.20262.

Cooper, M. M., Corley, L. M. and Underwood, S. M. 2013. ‘An investigation of college chemistry students’ understanding of structure-property relationships’, Journal of Research in Science Teaching, 50(6), pp. 699–721. doi: 10.1002/tea.21093.

Daryanto .2010. Evaluasi pendidikan. Jakarta: Rineka Cipta. Jakarta: Rineka Cipta.

Ebbing, D. D. and Gammon, S. 2009. General Chemistry, 9thEd. Boston: Houghton Mifflin Company.

Fathima, M. P., Roja, M. P. and Sasikumar, N. 2012. ‘Effect of Information Processing Approach in Enhancing Achievement in Chemistry at Higher Secondary level’, 3(2), pp. 1–7.

Gabel, D. 1999. ‘Improving Teaching and Learning through Chemistry Education Research: A Look to the Future’, Journal of Chemical Education, 76(4), pp. 548–554. doi: 10.1021/ed076p548.

Goes, L.F., Chen, X., Nogueira, K.S.C., Fernandez, C..and Eilks, I. 2019. ‘An analysis of the visual representation of redox reactions in secondary chemistry textbooks from different chinese communities’, Education Sciences, 9(1), pp. 313–324. doi: 10.3390/educsci9010042.

Gulacar, O., Milkey, A. and Eilks, I. .2020. ‘Exploring cluster changes in students’ knowledge structures throughout general chemistry’, Eurasia Journal of Mathematics, Science and Technology Education, 16(6). doi: 10.29333/EJMSTE/7860.

Gürses, A., Sahin, E., Barın, T. B., and Günes, K A. 2022. ‘A Functional Analogy on Instructor-Learner Interaction and Reversible Work-Meaningful Learning’, Education Quarterly Reviews, 5(1), pp. 67–69. doi: 10.31014/aior.1993.05.01.419.

Hamid, A., Hikmah, N. and Sholahuddin, A. 2022. ‘Problem-Based Learning with Multilevel Representation: A Strategy to Master the Ionic Equilibrium in Solution Concepts’, JTK (Jurnal Tadris Kimiya), 7(1), pp. 78–90. Available at: https://journal.uinsgd.ac.id/index.php/tadris-kimiya/article/view/10746.

Hanif, N., Sopandi, W. and Kusrijadi, A. 2013. ‘Analisis Hasil Belajar Level Makroskopik, Submikroskopik, dan Simbolik Berdasarkan Gaya Kognitif Siswa Sma Pada Materi Pokok Sifat Koligatif Larutan’, Jurnal Pengajaran Matematika dan Ilmu Pengetahuan Alam, 18(1), p. 116. doi: 10.18269/jpmipa.v18i1.264.

Herawati, R. F., Mulyani, S. and Redjeki, T. 2013. ‘Pembelajaran Kimia Berbasis Multiple Siswa Sma Negeri I Karanganyar Tahun Pelajaran 2011 / 2012’, Jurnal Pendidikan Kimia, 2(2), pp. 38–43.

Hikmayanti, M. and Utami, L. 2019. ‘Analisis Kemampuan Multiple Representasi Siswa Kelas XI MAN 1 Pekanbaru Pada Materi Titrasi Asam Basa’, JRPK: Jurnal Riset Pendidikan Kimia, 9(1), pp. 52–57. doi: 10.21009/jrpk.091.07.

Huda, T. ., Fadiawati, N. and Tania, L. 2015. ‘Pengembangan e-book interaktif Pada materi termokimia berbasis representasi kimia’, Jurnal Pendidikan dan Pembelajaran Kimia, 4(2), pp. 530–542.

Huie, E. Z., Sathe, R.U., Wadhwa, A., Santos, E. V., and Gulacar, O. 2022. ‘Facilitating Concept Map Analysis: Generating and Evaluating Representative General Chemistry Concept Maps with a Novel Use of Image J, Gephi, JPathfinder, and R’, Eurasia Journal of Mathematics, Science and Technology Education, 18(1), pp. 1–15. doi: 10.29333/EJMSTE/11484.

Igaz, C. and Prokša, M. 2012. ‘Conceptual questions and lack of formal reasoning: Are they mutually exclusive?’, Journal of Chemical Education, 89(10), pp. 1243–1248. doi: 10.1021/ed100895c.

Izzati, S., Sunyono and Efkar, T. 2015. ‘Penerapan Simayang Tipe II Berbasis Multipel Representasi pada Materi Asam Basa’, Jurnal Pendidikan dan Pembelajaran Kimia, 4(1), pp. 262–274.

Johnstone, A. H. 1993. ‘Symposium on fievolution and Evolution in Chemical Education The Development of Chemistry Teaching’, Journal of Chemical Education, 70(9), pp. 701–705.

Kelly, R. M. 2017. ‘Aprender de las animaciones de contraste molecular con una actividad de monitorización metacognitiva’, Educacion Quimica, 28(3), pp. 181–194. doi: 10.1016/j.eq.2017.02.003.

Kibar, Z. B., Yaman, F. and Ayas, A. 2013. ‘Assessing prospective chemistry teachers’ understanding of gases through qualitative and quantitative analyses of their concept maps’, Chemistry Education Research and Practice, 14(4), pp. 542–554. doi: 10.1039/c3rp00052d.

Langitasari, I. 2016. ‘Analisis Kemampuan Awal Multi Level Representasi Mahasiswa Tingkat I Pada Konsep Reaksi Redoks’, Edu Chemia, 1(1), pp. 14–24. doi: 10.30870/educhemia.v1i1.436.

Mashami, R. A., Andayani, Y. and Gunawan, G. 2014. ‘Pengaruh Media Animasi Submikroskopik Terhadap Peningkatan Kemampuan Representasi Siswa’, Hydrogen: Jurnal Kependidikan Kimia, 2(1), p. 149. doi: 10.33394/hjkk.v2i1.642.

Meutia, F., Nurdin, N. and Winarni, S. 2021. ‘Development of e-student worksheets based on multiple representations of factors affecting reaction rates’, Jurnal Penelitian Pendidikan IPA, 7(2), p. 129. doi: 10.29303/jppipa.v7i2.533.

Nayazik, A., Sukestiyarno and Hindarto, N. 2013. ‘Peningkatan karakter dan pemecahan masalah melalui pembelajaran ideal problem solving-pemrosesan informasi’, Unnes Journal of Mathematics Education Research, 2(2). Available at:

http://journal.unnes.ac.id/sju/index.php/ujmer.

Nuić, I. and Glažar, S. A. 2020. ‘The effect of e-learning strategy at primary school level on understanding structure and states of matter’, Eurasia Journal of Mathematics, Science and Technology Education, 16(2). doi: 10.29333/ejmste/114483.

Papageorgiou, G., Amariotakis, V. and Spiliotopoulou, V. 2019. ‘Developing a Taxonomy for Visual Representation Characteristics of Submicroscopic Particles in Chemistry Textbooks’, Science Education International, 30(3), pp. 181–193. doi: 10.33828/sei.v30.i3.4.

Park, C. Y., Won, J. A., Kim, S., Choi, H., and Paik, S. H. l. 2020. ‘Lack of sub-microscopic representation ability of 12th grade science students in various acid and base problem solving processes’, Journal of the Korean Chemical Society, 64(1), pp. 30–37. doi: 10.5012/jkcs.2020.64.1.30.

Ristiyani, E. and Bahriah, E. S. 2016.‘Analisis kesulitan belajar kimia siswa di sman x kota Tangerang Selatan’, Jurnal Penelitian dan Pembelajaran IPA, 2(1), pp. 18–29. doi: 10.30870/jppi.v2i1.431.

Russell, J.W., Kozma, R.B. Jones, T., Wykoff, J., Marx, N., and Davis, J. W. 1997. ‘Use of Simultaneous-Synchronized Macroscopic, Microscopic, and Symbolic Representations To Enhance the Teaching and Learning of Chemical Concepts’, Journal of Chemical Education, 74(3), p. 330. doi: 10.1021/ed074p330.

Sari, R. P. and Seprianto, S. 2018. ‘Analisis Kemampuan Multipel Representasi Mahasiswa FKIP Kimia Universitas Samudra Semester II Pada Materi Asam Basa dan Titrasi Asam Basa’, Jurnal Pendidikan Sains Indonesia, 6(1), pp. 55–62. doi: 10.24815/jpsi.v6i1.10745.

Sujak, K. B., Gnanamalar, E. and Daniel, S. 2017.‘Understanding of Macroscopic, Microscopic and Symbolic Representations among Form Four Students in Solving Stoichiometric Problems.’, Malaysian Online Journal of Educational Sciences, 5(3), pp. 83–96. Available at: www.moj-es.net.

Sukmawati, W. 2019. ‘Analisis level makroskopis, mikroskopis dan simbolik mahasiswa dalam memahami elektrokimia’, Jurnal Inovasi Pendidikan IPA, 5(2), pp. 195–204. doi: 10.21831/jipi.v5i2.27517.

Syahrial, S. and Winarni, S. 2021. ‘First year university students’ conceptual understanding of physical and chemical changes (a preliminary research)’, Chimica Didactica Acta, 9(1), pp. 27–32. doi: 10.24815/jcd.v9i1.21210.

Treagust, D. F. and Chittleborough, G. 2007.‘The Modelling Ability of Non-major Chemistry Students and Their Understanding of the Sub-microscopic Level’, Chemistry Education Research and Practice, 8(3), pp. 274–361.

Treagust, D. F., Chittleborough, G. and Mamiala, T. L. 2003. ‘The role of submicroscopic and symbolic representations in chemical explanations’, International Journal of Science Education, 25(11), pp. 1353–1368. doi: 10.1080/0950069032000070306.

Uyulgan, M. A. and Güven, N. A. 2021. ‘Linking the representation levels to a physical separation and purification method in chemistry: Understanding of distillation experiment’, Journal of Pedagogical Research, 5(3), pp. 80–104. doi: 10.33902/jpr.2021370703.

Valanides, N. 1999 ‘Formal reasoning performance of higher secondary school students : theorical and educational implication’, European Journal of Psychology of Education, XIV(1), pp. 109–127.

Winarni,S., Effendy, E., Budiasih, E., and Wonorahardjo, S. 2022.

‘Constructing “Concept Approval Strategy,” a chemistry learning idea to prevent misconceptions’, Educación Química, 33(2), pp. 159–180. doi: 10.22201/fq.18708404e.2022.2.79841.

Wulandari, C., Susilaningsih, E. and Kasmui, K. 2018. ‘Estimasi Validitas Dan Respon Siswa Terhadap Bahan Ajar Multi Representasi : Definitif, Makroskopis, Mikroskopis, Simbolik Pada Materi Asam Basa’, Phenomenon : Jurnal Pendidikan MIPA, 8(2), pp. 165–174. doi: 10.21580/phen.2018.8.2.2498.

Zidny, R., Sopandi, W. and Kusrijadi, A. .2015. ‘Gambaran level submikroskopik untuk menunjukkan Pemahaman konsep siswa pada materi persamaan kimia dan stoikiometri’, Jurnal Penelitian dan Pembelajaran IPA, 1(1), pp. 42–59.

Zuhroti, B., Marfu’ah, S. and Ibnu, M. S. 2018. ‘Identifikasi Pemahaman Konsep Tingkat Representasi Makroskopik, Mikrokopik dan Simbolik Siswa Pada Materi Asam-Basa’, J-PEK (Jurnal Pembelajaran Kimia), 3(2), pp. 44–49. doi: 10.17977/um026v3i22018p044.




DOI: http://dx.doi.org/10.30870/educhemia.v7i2.14250

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sri Winarni, Mujibaturrahmi Mujibaturrahmi, Latifah Hanum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

    

             

                                                                                                                                                                                      More Indecxing... 

 

Creative Commons License

EduChemia (Jurnal Kimia dan Pendidikan) is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia (Jurnal Kimia dan Pendidikan) ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : educhemia@untirta.ac.id