Correlation Analysis of Radical Polymerization Reactor Operating Conditions to Industrial Scale Swelling Capacity of Superabsorbent

Willy Aulia Ilham, Teguh Kurniawan, Saepurahman Saepurahman, Ratna Sari siti Aisyah

Abstract


Superabsorbent polymer (SAP) is a polymer that has one function as an absorbent material in baby diapers, whose quality is determined by the number of swelling capacity (SC). Many previous studies regarding the effect of synthesis parameters on the number of SC were limited to the laboratory scale, where the polymerization conditions, the number of variables, and SC data obtained were very limited, in contrast to the industrial scale. The radical polymerization stage, with its accompanying operating variables such as reaction temperature, monomer concentration, retention time, crosslinker concentration, the addition of nitrogen gas, and initiator concentration, affects the value of SC in industrial-scale production. This study aims to analyse the correlation between the reactor operating conditions and the number of SAP SC obtained. Correlation data analysis was done using Microsoft Excel with Data Analysis Toolpak and Python by utilizing production data with a total of 1,562 entries, where the correlation between each variable was calculated using Pearson’s correlation coefficient. The analysis determined that the variables that had the strongest correlation with the SC were retention time and reaction temperature, with correlation coefficient values of 0.31 and -0.26. The weakest correlation was obtained from the addition of nitrogen gas and an initiator with a value of -0.07 and -0.02. Positive values indicate a relationship that is directly proportional, while negative values indicate an inverse relationship. Based on the correlation analyses and trends, the ideal polymerization conditions have been identified.


Keywords


superabsorbent polymer, radical polymerization, swelling capacity, correlation data analysis

Full Text:

PDF

References


Abidin, A. Z., Susanto, G., Sastra, N. M. T., & Puspasari, T. (2018). Sintesis dan Karakterisasi Polimer Superabsorban dari Akrilamida. Jurnal Teknik Kimia Indonesia, 11(2), 84. https://doi.org/10.5614/jtki.2012.11.2.5

Ahmed, R., & Syed, K. A. (2016). Synthesis of Superabsorbent Polymer (SAP) via Industrially Preferred Route. Journal of Basic & Applied Sciences, 12, 383–387.

Amalia, R., & Kumoro, A. C. (2016). Analisis sifat fisikokimia dan uji korelasi regresi antara nilai derajat substitusi dengan swelling power dan solubility pada tepung gadung (Dioscorea hispida Dennst) terasetilasi. Inovasi Teknik Kimia, 1(1), 17–26.

Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. https://doi.org/10.1080/10408340500526766

Bachra, Y., Grouli, A., Damiri, F., Bennamara, A., & Berrada, M. (2020). A new approach for assessing the absorption of disposable baby diapers and superabsorbent polymers: A comparative study. Results in Materials, 8(November). https://doi.org/10.1016/j.rinma.2020.100156

Braihi, A. (2016). Applications of the Super Absorbent Polymers. ResearchGate, December 2016, 1–4.

Brand, R. H., Hartwig, A., Opitz, B., Pfeifer, C., Drochner, A., & Vogel, G. H. (2011). The Consumption of Oxygen and p-Methoxyphenol in Acrylic Acid - Kinetics and Modeling. Macromolecular Reaction Engineering, 5(5–6), 212–222. https://doi.org/10.1002/mren.201000057

Brocken, L., Price, P. D., Whittaker, J., & Baxendale, I. R. (2017). Continuous flow synthesis of poly(acrylic acid): Via free radical polymerisation. Reaction Chemistry and Engineering, 2(5), 662–668. https://doi.org/10.1039/c7re00063d

Budiman Anwar, Nurkomarasari Risa, S. Y. (2021). Chemica Isola Pengaruh Crosslinker N , N ’ -Metilenbisakrilamida ( MBA ) terhadap Kinerja Kopolimer Superabsorben Selulosa Bakterial Nata de Soya - Asam Akrilat yang Disintesis Menggunakan Radiasi Microwave. Chemica Isola, 1(April), 1–8. https://ejournal.upi.edu/index.php/CI/index ARTICLE

Dave, P. N., & Gor, A. (2018). Natural polysaccharide-based hydrogels and nanomaterials: Recent trends and their applications. In Handbook of Nanomaterials for Industrial Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813351-4.00003-1

Hamzah, N. (2017). Teknik Sintesis Povidon. Jf Fik Uinam, 5(36).

He, Z., Shen, A., Guo, Y., Lyu, Z., Li, D., Qin, X., Zhao, M., & Wang, Z. (2019). Cement-based materials modified with superabsorbent polymers: A review. Construction and Building Materials, 225, 569–590. https://doi.org/10.1016/j.conbuildmat.2019.07.139

Hosseinzadeh, H. (2013). Synthesis and swelling properties of a poly(vinyl alcohol)-based superabsorbing hydrogel. Current Chemistry Letters, 2(3), 153–158. https://doi.org/10.5267/j.ccl.2013.05.001

Jafari, M., Najafi, G. R., & Sharif, M. A. (2021). Superabsorbent polymer composites derived from polyacrylic acid : Design and synthesis , characterization , and swelling capacities. 29(6), 733–739. https://doi.org/10.1177/0967391120933482

Khanlari, S., & Dubé, M. A. (2015). Effect of pH on Poly(acrylic acid) Solution Polymerization. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52(8), 587–592. https://doi.org/10.1080/10601325.2015.1050628

Konstantinov, I. A., & Broadbelt, L. J. (2019). A Quantum Mechanical Approach for Accurate Rate Parameters of Free-Radical Polymerization Reactions. In Computational Quantum Chemistry. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815983-5.00002-7

Kwon, Y. R., Kim, J. S., & Kim, D. H. (2021). Effective enhancement of water absorbency of itaconic acid based-superabsorbent polymer via tunable surface—crosslinking. Polymers, 13(16). https://doi.org/10.3390/polym13162782

Lee, G. H., Vo, N. D., Jeon, R. Y., Han, S. W., Hong, S. U., & Oh, M. (2018). Modeling and simulation for acrylamide polymerization of super absorbent polymer. Korean Journal of Chemical Engineering, 35(9), 1791–1799. https://doi.org/10.1007/s11814-018-0093-x

Llanes, L., Dubessay, P., Pierre, G., Delattre, C., & Michaud, P. (2020). Biosourced Polysaccharide-Based Superabsorbents. 51–79.

Ma, X., & Wen, G. (2020). Development history and synthesis of super-absorbent polymers: a review. Journal of Polymer Research, 27(6). https://doi.org/10.1007/s10965-020-02097-2

Mehner, P. J. (2021). Modeling and Simulation of Components and Circuits with Intrinsically Active Polymers. October. https://doi.org/10.25368/2021.1

Meshram, I., Kanade, V., Nandanwar, N., & Ingle, P. (2020). Super-Absorbent Polymer: A Review on the Characteristics and Application. International Journal of Advanced Research in Chemical Science, 7(5), 8–21. https://doi.org/10.20431/2349-0403.0705002

Mohana Raju, K., Padmanabha Raju, M., & Murali Mohan, Y. (2002). Synthesis and water absorbency of crosslinked superabsorbent polymers. Journal of Applied Polymer Science, 85(8), 1795–1801. https://doi.org/10.1002/app.10731

Ostrand, M. S., DeSutter, T. M., Daigh, A. L. M., Limb, R. F., & Steele, D. D. (2020). Superabsorbent polymer characteristics, properties, and applications. Agrosystems, Geosciences and Environment, 3(1), 1–14. https://doi.org/10.1002/agg2.20074

Rakhmawati, I., & Kurniawan, C. (2019). Indonesian Journal of Chemical Science Pengaruh Konsentrasi Metilenbisakrilamida dalam Sintesis Komposit Poli ( Asam Akrilat ) -Kaolin dan Pengujiannya sebagai Superabsorben. Indonesian Journal of Chemical Science, 8(2), 93–104.

Saefuloh, I., Rifa’i, A., Haryadi, H., Yusuf, Y., Susilo, S., & Aswata, A. (2019). Pengaruh Temperatur dan Reduksi Hasil Proses Rolling Terhadap Sifat Mekanik Ultra High Molecular Weight Polyethilene (UHMWPE) Sebagai Material Pengganti Lutut Tiruan. FLYWHEEL : Jurnal Teknik Mesin Untirta, V(1), 105. https://doi.org/10.36055/fwl.v0i0.5842

Shanmugasundaram, O. L. (2008). Superabsorbent polymers. Asian Dyer, 5(4), 55–58.

Specification, E. P. (2020). * EP002980124B1 *. 1(19), 1–15.

Sulistyawati, E. (2010). Polimerisasi Akrilamida dengan Metode Mixed Solvent Precipitation Menggunakan Inisiator Kalium Persulfat. Eksergi, X, 21.

Sunardi, S., Irwan, A., Latifah, A., Istikowati, W. T., & Haris, A. (2017). Kajian Pengaruh Jumlah Agen Pengikat Silang Terhadap Karakteristik Superabsorben Asam Akrilat Tercangkok Selulosa Dari Alang-Alang (Imperata cylindrica). Jurnal Sains Dan Terapan Kimia, 11(1), 15. https://doi.org/10.20527/jstk.v11i1.3169

Sunit, H. (2010). Perkembangan Teknologi Polimerisasi Radikal Bebas Terkontrol dan Aplikasi pada Pembuatan Biodegradabel Polimer. In Prosiding Simposium Nasional Polimer VI.

Susmanto, P., Santia, L., Utari, I. R., & Rendana, M. (2020). Pengaruh Penambahan Selulosa dari Serat Kapuk dan Crosslink Agent terhadap Sifat Absorpsi dan Rasio Swelling Biopolimer Superabsorben. Jurnal Integrasi Proses, 9(2), 9–14.

Swantomo, D., Megasari, K., & Saptaaji, R. (2008). Pembuatan Komposit Polimer Superabsorben Dengan Mesin Berkas Elektron. Jurnal Forum Nuklir, 2(2), 143. https://doi.org/10.17146/jfn.2008.2.2.3286

Ward, J. D. (2021). Feasibility of Free Radical Polymerization of Acrylic Acid in a Continuous Flow Reactor. University of Pittsburgh.

Windarto, Y. E. (2020). Analisis Penyakit Kardiovaskular Menggunakan Metode Korelasi Pearson, Spearman Dan Kendall. Jurnal SAINTEKOM, 10(2), 119. https://doi.org/10.33020/saintekom.v10i2.149

Yeh, C. J., Hu, M., & Shull, K. R. (2018). Oxygen Inhibition of Radical Polymerizations Investigated with the Rheometric Quartz Crystal Microbalance. Macromolecules, 51(15), 5511–5518. https://doi.org/10.1021/acs.macromol.8b00720

Zohuriaan Mohammad J., Mehr, and K. K. (2008). Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal, 17, 451–477.




DOI: http://dx.doi.org/10.30870/educhemia.v8i2.18853

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Willy Aulia Ilham

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

    

             

                                                                                                                                                                                      More Indecxing... 

 

Creative Commons License

EduChemia (Jurnal Kimia dan Pendidikan) is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia (Jurnal Kimia dan Pendidikan) ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : educhemia@untirta.ac.id