Analysis of The Student's Ability to Interconnect Macro-Submicro-Symbolic Representation on Electrolyte Solution Concept

Indah Langitasari, Babang Robandi

Abstract


A comprehensive understanding of chemistry requires thinking using three levels of interconnected representation: macroscopic, submicroscopic, and symbolic. Electrolyte solutions are one of the concepts in chemistry that need to involve the interconnection of the three levels of chemical representation in studying them. This study aims to analyze the students' ability to interconnect the three levels of chemical representation in the electrolyte solutions concept. This research used a descriptive quantitative research design. The research instrument used The Multiple Representation of Electrolyte Test (MRET). The research data were analyzed descriptively based on the students' answer patterns. The results showed that the student's ability to interconnect the three levels of chemical representation in the electrolyte solutions concept is low. Students are only able to make interconnections between macroscopic and symbolic levels.

Keywords


interconnection, representation, macroscopic, submicroscopic, symbolic, electrolyte solutions, MRET

Full Text:

PDF

References


Adadan, E. (2013). Using multiple representations to promote grade 11 students’ scientific understanding of the particle theory of matter. Research Science Education, 43: 1079-1105.

Andrianie, D., Sudarmin, & Wardani, S. (2018). Representasi Kimia Untuk Mereduksi Miskonsepsi Siswa Pada Materi Redoks Melalui Penerapan Model Pembelajaran Inkuiri Terbimbing Berbantuan LKS. Chemistry in Education, 7(2).

Aulia, A., & Andromeda. (2019). Pengembangan E-Modul Berbasis Inkuiri Terbimbing Terintegrasi Multirepresentasi dan Virtual Laboratory pada Materi Larutan Elektrolit dan Nonelektrolit untuk Kelas X SMA / MA. EduKimia Journal, 1(2), 94–102.

Baldwin, N., & Orgill, M. (2019). Relationship between teaching assistants’ perceptions of student learning challenges and their use of external representations when teaching acid–base titrations in introductory chemistry laboratory courses. Chem. Educ. Res. Pract., 20 (4), 821-836. doi:10.1039/c9rp00013e

Chandrasegaran, A.L., Treagust, D.F., & Mocerino, M. 2007. The Development of two-tier multiple-choice diagnostic instrumen for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practise, 8 (3): 293-307.

Chittleborough, G. D. (2004). The Role of Teaching Models and Chemical Representation in Developing Students Mental Models of Chemical Phenomena. Tesis Doktor. Curtin University of Technology.

Ferreira, J. E. V., & Lawrie, G. A. (2019). Profiling the combinations of multiple representations used in large-class teaching: Pathways to inclusive practices. Chem. Educ. Res. Pract. 20 (4): 902-923. doi:10.1039/c9rp00001a.

Fitriyani, D., Rahmawati, Y., & Yusmaniar. (2019). Analisis Pemahaman Konsep Siswa pada Pembelajaran Larutan Elektrolit dan Non- Elektrolit dengan 8E Learning Cycle. Jurnal Riset Pendidikan Kimia, 9(1), 30–40.

Garnett, P.J. & Treagust, D.F. 1992. Conseptual Difficulties by Senior High School Student of Electrochemistry: Electric Circuit and Oxidation-reduction Equations. Journal of Research in Science Teaching, 29 (2): 121-142.

Gkitzia, V., Salta, K., & Tzougraki, C. (2019). Students’ Competence in Translating Between Different Types of Chemical Representations. Chem. Educ. Res. Pract., 21, 307-330. doi:10.1039/c8rp00301g

Herawati, R. F., Mulyani, S., Redjeki, T. (2013). Pembelajaran Kimia Berbasis Multiple Representasi Ditinjau Dari Kemampuan Awal Terhadap Pretasi Belajar Laju Reaksi Siswa SMA Negeri 1 Karangayar Tahun Pelajaran 2011/2012. Jurnal Pendidikan Kimia (JPK), 2(2): 38-43.

Herman, H., Nurhadi1, M., & Gunawan, R. (2021). Development of Multiple Representation Based Module with PowerPoint Assisted On Electrolyte and Non Electrolyte Solutions. Jurnal Zarah, 9(1), 1–7.

Jansoon, N., Cool, R.K., & Samsook, E. (2009). Understanding Mental Models of Dilution in Thai Students. International Journal of Environmental & Sciense Education. 4 (2): 147-168.

Johnstone, A. H. (1982). Macro-and Micro-Chemistry. School Science Review, 227 (64): 377-379.

Kelly, R.M., Phelps, A.J., & Sanger, M.J. 2004. The effects of a Computer Animation on Students’ Conceptual Understanding of a Can-Crusing demonstration at the Macroskopic, Microskopic, dan symbolic levels. The Chemical Educator, 9 (3): 184-188.

Langitasari, I., Effendy, Fazaroh, F. (2018). Dynamic and Static Modeling Embedded in Inquiry Learning to Improve Student’s Multiple Representation Ability. Jurnal Penelitian dan Pembelajaran IPA, 4 (1): 1-13.

Langitasari, I. (2016). Analisis Kemampuan Awal Multi Level Representasi Mahasiswa Tingkat I Pada Konsep Reaksi Redoks. Jurnal Kimia Dan Pendidikan, 1(1), 14–24.

Levy, D. (2013). How Dynamic Visualization Technology can Support Molecular Reasoning. Journal of Science Education and Technology, 22 (5): 702-717. DOI 10.1007/s10956-012-9424-6.

Nastiti, R.D., Fadiawati, N., Dan Kadaritna N. (2012). Development Module Of Reaction Rate Based On Multiple Representations. Jurnal Pendidikan dan Pembelajaran Kimia, 1 (2).

Rau, M. A. (2015). Enhancing undergraduate chemistry learning by helping students make connections among multiple graphical representations. Chem. Educ. Res. Pract, 16(3), 654–669. doi:10.1039/c5rp00065c

Siew, W.S., Mohammad Yusof Arshad. (2014). Application of Multiple Representation Levels in Redox Reactions among Tenth Grade Chemistry Teachers. Journal of Turkish Science Education, 11 (3): 35-52.

Sunyono, S., Meristi, A. (2018). The Effect of Multiple Representation-Based Learning (Mrl) To Increase Students’ Understanding of Chemical Bonding Concepts. Jurnal Pendidikan IPA Indonesia. 7 (4): 399-406 DOI: 10.15294/jpii.v7i4.16219.

Sunyono, Yuanita L., Ibrahim, M. (2015). Supporting Students in Leearning with Multiple Representation to Improve Student Mental Models on Atomic Structure Concepts. Science Education International, 26 (2): 104-125.

Talanquer, V. (2018). Chemical rationales: another triplet for chemical thinking, International Journal of Science Education, 40:15, 1874-1890, DOI: 10.1080/09500693.2018.1513671

Tasker, R. & Dalton, R. 2006. Research Into Practise: Visualisation of the Molecular World Using Animations. Chemistry Education Research and Practise, 7 (2), 141-159.

Tuysuz, M., Ekiz, B., Bektas, O., Uzuntiryaki, E., Tarkin, A., & Kutucu, E.S. 2011. Pre-service Chemistry Teachers’ Understanding of Phase Changes and Dissolution at Macroscopic, Symbolic, and Microskopic Levels. Procedia Social and Behavioral Sciences, 15: 152-455.

Upahi, J., & Ramnarain, U. (2019). Representations of Chemical Phenomena in Secondary School Chemistry Textbooks. Chem. Educ. Res. Pract. 20 (1): 146-159. doi:10.1039/c8rp00191j




DOI: http://dx.doi.org/10.30870/educhemia.v8i1.19974

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Indah Langitasari, Babang Robandi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

    

             

                                                                                                                                                                                      More Indecxing... 

 

Creative Commons License

EduChemia (Jurnal Kimia dan Pendidikan) is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia (Jurnal Kimia dan Pendidikan) ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : educhemia@untirta.ac.id