Volatile Compounds and Potential Biological Activities of Essential Oil of Citrus amblycarpa Hassk. Ochse

Rahmat Rasmawan, Putut Marwoto, Sunyoto Eko Nugroho

Abstract


The utilization of volatile compounds from essential oils in the world of food, industry and medicine continues to experience development, one of which comes from orange peel. This study aims to identify volatile compounds present in the essential oil of sambal orange peel (Citrus amblycarpa Hassk. Ochse) using GC-MS and analyze the potential biological activity of these volatile compounds through various research results. The results obtained from this study were the discovery of dominant volatile compounds in essential oil from sambal orange peel, namely D-Limonene (37.41%), β-pinene (22.52%), Germacrene D (13.21%) and α-Pinene (10.79%). Based on the largest compound components of the essential oil, it is known that these compounds have potential as anti-oxidants, anti-bacterial, anti-inflammatory, anti-cancer, and anti-fungal. Overall, the results of this study are expected to provide direction towards further research, especially testing the biological activity of the essential oil of sambal orange peel (Citrus amblycarpa Hassk. Ochse) experimentally.

Keywords


Volatile compounds, essential oil, GC-MS, biological activity, Citrus amblycarpa Hassk. Ochse

References


Abdel Samad, R., El Darra, N., Al Khatib, A., Chacra, H. A., Jammoul, A., & Raafat, K. (2023). Novel dual-function GC/MS aided ultrasound-assisted hydrodistillation for the valorization of Citrus sinensis by-products: phytochemical analysis and anti-bacterial activities. Scientific Reports, 13(1), 12547. https://doi.org/10.1038/s41598-023-38130-9.

Agarwal, P., Sebghatollahi, Z., Kamal, M., Dhyani, A., Shrivastava, A., Singh, K. K., ... & Baek, K. H. (2022). Citrus essential oils in aromatherapy: Therapeutic effects and mechanisms. Antioxidants, 11(12), 2374. https://doi.org/10.3390/antiox11122374.

Anandakumar, P., Kamaraj, S. and Vanitha, M.K. (2021). D-limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 45(1), e13566. https://doi.org/10.1111/jfbc.13566.

Aydin, E., Türkez, H. and Geyikoğlu, F. (2013). Antioxidative, anticancer and genotoxic properties of α-pinene on N2a neuroblastoma cells. Biologia, 68(5), 1004–1009. https://doi.org/ 10.2478/s11756-013-0230-2.

Ben Hsouna, A., Ben Halima, N., Smaoui, S., & Hamdi, N. (2017). Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids in health and disease, 16, 1-11. https://doi.org/10.1186/s12944-017-0487-5.

Bhandari, D. P., Poudel, D. K., Satyal, P., Khadayat, K., Dhami, S., Aryal, D., ... & Parajuli, N. (2021). Volatile compounds and antioxidant and antimicrobial activities of selected citrus essential oils originated from Nepal. Molecules, 26(21), 6683. https://doi.org/10.3390/molecules26216683.

Bora, H., Kamle, M., Mahato, D. K., Tiwari, P., & Kumar, P. (2020). Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants, 9 (3), 357. https://doi.org/10.3390/plants9030357

Bourgou, S., Rahali, F. Z., Ourghemmi, I., & Saïdani Tounsi, M. (2012). Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. The Scientific World Journal, 2012(1), 528593. https://doi.org/10.1100/2012/528593.

Budiarto, R., Poerwanto, R., Santosa, E., & Efendi, D. (2017). The potential of limau (Citrus amblycarpa Hassk. Ochese) as a functional food and ornamental mini tree based on metabolomics and morphological approaches. J. of Tropical Crop Science, 4(2). 49–57. https://doi.org/10.29244/jtcs.4.2.49-57.

Chaudhary, S. C., Siddiqui, M. S., Athar, M., & Alam, M. S. (2012). D-Limonene modulates inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Human & experimental toxicology, 31(8), 798-811. https://doi.org/10.1177/0960327111434948.

Chukwuma, I. F., Uchendu, N. O., Asomadu, R. O., Ezeorba, W. F. C., & Ezeorba, T. P. C. (2023). African and Holy Basil-a review of ethnobotany, phytochemistry, and toxicity of their essential oil: Current trends and prospects for antimicrobial/anti-parasitic pharmacology. Arabian Journal of Chemistry, 16(7), 104870.: https://doi.org/10.1016/j.arabjc.2023.104870.

Dewi, Y.S.K. (2022). The Study of Citrus Peels (Citrus amblycarpa) Mass Ratio Substitution on Physicochemical of Rich-Antioxidant of Liang Tea. Poltekita : Jurnal Ilmu Kesehatan, 16(2), 241–248. https://doi.org/10.33860/jik.v16i2.1439.

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), 25. https://doi.org/10.3390/medicines3040025.

Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., ... & Kačániová, M. (2022). The potential use of Citrus aurantifolia L. essential oils for decay control, quality preservation of agricultural products, and anti-insect activity. Agronomy, 12(3), 735. https://doi.org/10.3390/agronomy12030735.

González-Mas, M. C., Rambla, J. L., López-Gresa, M. P., Blázquez, M. A., & Granell, A. (2019). Volatile compounds in citrus essential oils: A comprehensive review. Frontiers in plant science, 10, 12. https://doi.org/10.3389/fpls.2019.00012.

Himed, L., Merniz, S., Monteagudo-Olivan, R., Barkat, M., & Coronas, J. (2019). Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Scientific African, 6, e00181. https://doi.org/10.1016/j.sciaf.2019.e00181.

Jain, N., & Sharma, M. (2017). Evaluation of Citrus lemon essential oil for its chemical and biological properties against fungi causing dermatophytic infection in human beings. Analytical Chemistry Letters, 7(3), 402-409. https://doi.org/10.1080/22297928.2017.1349620.

Jain, N., & Sharma, M. (2017). Evaluation of Citrus lemon essential oil for its chemical and biological properties against fungi causing dermatophytic infection in human beings. Analytical Chemistry Letters, 7(3), 402-409. https://doi.org/10.1021/jf5006148.

Kant, R. and Kumar, A. (2022). Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustainable Chemistry and Pharmacy, 30, 100829. https://doi.org/10.1016/j.scp.2022.100829.

Kim, D. S., Lee, H. J., Jeon, Y. D., Han, Y. H., Kee, J. Y., Kim, H. J., ... & Hong, S. H. (2015). Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. The American journal of Chinese medicine, 43(04), 731-742. https://doi.org/10.1142/S0192415X15500457.

Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 1, pp. 285-292). Dordrecht, The Netherlands:: Springer. https://doi.org/10.1007/978-94-007-4053-2_72.

Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., ... & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food chemistry: X, 13, 100217. https://doi.org/10.1016/j.fochx.2022.100217.

Mohammed, A. M., Alrayeh, A. S., Mohamed, M. E., & Abdel-Rahman, N. A. (2021). GC–MS of essential oil, metal profile and physicochemical properties of fruits of Citrus macrophylla Wester from Sudan. Bulletin of the National Research Centre, 45, 1-8. https://doi.org/10.1186/s42269-021-00667-y.

Mustafa, N.E.M. (2015). Citrus Essential Oils: Current and Prospective Uses in the Food Industry. Recent Patents on Food, Nutrition & Agriculture, 7(2), 115–127. https://doi.org/10.2174/2212798407666150831144239.

Noshad, M., Alizadeh Behbahani, B. and Nikfarjam, Z. (2022). Chemical composition, antibacterial activity and antioxidant activity of Citrus bergamia essential oil: Molecular docking simulations. Food Bioscience, 50, 102123. https://doi.org/10.1016/j.fbio.2022.102123.

Park, B.B., An, J.Y. and Park, S.U. (2021). Recent studies on pinene and its biological and pharmacological activities. EXCLI Journal, 20, 812–818. https://doi.org/10.17179/excli2021-3714.

Rivas, A. C., Lopes, P. M., de Azevedo Barros, M. M., Costa Machado, D. C., Alviano, C. S., & Alviano, D. S. (2012). Biological activities of α-pinene and β-pinene enantiomers. Molecules, 17(6), 6305-6316. https://doi.org/10.3390/molecules17066305.

Salehi, B., Upadhyay, S., Erdogan Orhan, I., Kumar Jugran, A., LD Jayaweera, S., A. Dias, D., ... & Sharifi-Rad, J. (2019). Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules, 9(11), 738. https://doi.org/10.3390/biom9110738.

Shah, B., Shaikh, M. V., Chaudagar, K., Nivsarkar, M., & Mehta, A. (2019). D-limonene possesses cytotoxicity to tumor cells but not to hepatocytes. Polish Annals of Medicine, 26(2). https://doi.org/10.29089/2017.17.00047.

Silvestre, W. P., Livinalli, N. F., Baldasso, C., & Tessaro, I. C. (2019). Pervaporation in the separation of essential oil components: A review. Trends in food science & technology, 93, 42-52. https://doi.org/10.1016/j.tifs.2019.09.003.

Sreepian, A., Sreepian, P. and Chanthong, C. (2019). Antibacterial activity of essential oil extracted from Citrus hystrix (Kaffir Lime) peels: An in vitro study. Tropical biomedicine, 36(2), 531–541.

Tan, P.D., Phong, H. X., Cang, M., Bach, L. G., & Van Muoi, N. (2021). Kinetic modeling of essential oil hydro-distillation from peels of Pomelo (Citrus grandis L.) fruit grown in Southern Vietnam. Sains Malays, 50, 3251-3261. https://doi.org/10.17576/jsm-2021-5011-09.

Tangpao, T., Charoimek, N., Teerakitchotikan, P., Leksawasdi, N., Jantanasakulwong, K., Rachtanapun, P., ... & Sommano, S. R. (2022). Volatile organic compounds from basil essential oils: plant taxonomy, biological activities, and their applications in tropical fruit productions. Horticulturae, 8(2), 144. https://doi.org/10.3390/horticulturae8020144.

Vukić, M.D., Branković, J. and Ristić, M.S. (2023). GC, GC/MS analysis, and biological effects of Citrus aurantium amara essential oil. Acta Horticulturae et Regiotecturae, 26(1), 21–27. https://doi.org/10.2478/ahr-2023-0004.

Yu, H., Lin, Z. X., Xiang, W. L., Huang, M., Tang, J., Lu, Y., ... & Liu, L. (2022). Antifungal activity and mechanism of D-limonene against foodborne opportunistic pathogen Candida tropicalis. Lwt, 159, 113144. https://doi.org/10.1016/j.lwt.2022.113144.




DOI: http://dx.doi.org/10.30870/educhemia.v9i1.22973

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 rahmat rasmawan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

EduChemia Indexed by:

   

                                                                                                                                                                                                                                                 More Indecxing...                                                         

Creative Commons License

EduChemia: Jurnal Kimia dan Pendidikan is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________

EduChemia: Jurnal Kimia dan Pendidikan ISSN 2502-4778 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email  : [email protected]