Phosphate Accumulation Using MgO-Fe3O4/Agarose/Oxalic Acid Gel as a Diffusive Gradient in Thin Films (DGT) Binding Layer
Abstract
Monitoring phosphate concentration in waters is critical because excessive phosphate can lead to the death of aquatic organisms. Phosphate can be monitored via a passive sampler called Diffusion Gradient in Thin Films (DGT). This study combines MgO and Fe3O4 impregnated in agarose crosslinked with oxalic acid to accumulate phosphate from the solution as a DGT binding gel. The parameters observed in this study were MgO/Fe3O4 mass ratio (1:3, 1:1, 3:1), accumulation time (20, 40, 60, 120, 240, and 1440 min), phosphate concentration (0.2, 0.4, 0.6, 0.8, and 1 mg/L) and pH (4, 5, 6, 7, and 8) on phosphate accumulation. XRD pattern confirmed that the adsorbents used were MgO and Fe3O4. SEM analysis showed that the gel had an average pore size of 31.78 μm, and the adsorbents were evenly distributed. Gel with MgO/Fe3O4 mass ratio 3:1 can adsorb phosphate up to 97.19 ± 0.36%. The phosphate accumulation reached optimum after a minimum adsorption time of 4 hours and when the phosphate concentration in the solution was 0.4 mg/L. The solution's pH had no significant effect on phosphate accumulation. This study shows that MgO-Fe3O4/agarose/oxalic acid gel is an excellent binding gel to accumulate phosphate from water.
Keywords
Full Text:
PDFReferences
Abolghasemi, M. M., Sobhi, M., & Piryaei, M. (2016). Preparation of a novel green optical pH sensor based on immobilization of red grape extract on bioorganic agarose membrane. Sensors and Actuators, B: Chemical, 224, 391–395. https://doi.org/10.1016/j.snb.2015.10.038
Badamasi, H., Yaro, M. N., Ibrahim, A., & Bashir, I. A. (2019). Impacts of Phosphates on Water Quality and Aquatic Life. Chemical Research Journal, 4(3), 124–133.
Bertolucci, E., Galletti, A. M. R., Antonetti, C., Marracci, M., Tellini, B., Piccinelli, F., & Visone, C. (2015). Chemical and magnetic properties characterization of magnetic nanoparticles. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2015-July, 1492–1496. https://doi.org/10.1109/I2MTC.2015.7151498
Date, P., Tanwar, A., Ladage, P., Kodam, K. M., & Ottoor, D. (2020). Biodegradable and biocompatible agarose–poly (vinyl alcohol) hydrogel for the in vitro investigation of ibuprofen release. Chemical Papers, 74(6), 1965–1978. https://doi.org/10.1007/s11696-019-01046-8
Davison, W. (2016). Diffusive Gradients in Thin-Films for Environmental Measurements. Cambridge University Press.
Demirci, S., Yildirim, B. K., Tünçay, M. M., Kaya, N., & Güllüoğlu, A. N. (2021). Synthesis, characterization, thermal, and antibacterial activity studies on MgO powders. Journal of Sol-Gel Science and Technology, 99(3), 576–588. https://doi.org/10.1007/s10971-021-05609-8
Dinira, L., Rumhayati, B., Andayani, U., & Mardiana, D. (2024). Effect of casting temperature on the swelling degree and water content of agarose crosslinked with oxalic acid as DGT diffusion layer. AIP Conference Proceedings, 3068(1). https://doi.org/10.1063/5.0202031
Du, M., Zhang, Y., Wang, Z., Lv, M., Tang, A., Yu, Y., Qu, X., Chen, Z., Wen, Q., & Li, A. (2022). Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification. Chemical Engineering Journal, 442, 136147. https://doi.org/10.1016/j.cej.2022.136147
Ismail, M., Jobara, A., Bekouche, H., Abd Allateef, M., Ben Aissa, M. A., & Modwi, A. (2022). Impact of Cu Ions removal onto MgO nanostructures: adsorption capacity and mechanism. Journal of Materials Science: Materials in Electronics, 33(15), 12500–12512. https://doi.org/10.1007/s10854-022-08207-8
Jiang, F., Xu, X. W., Chen, F. Q., Weng, H. F., Chen, J., Ru, Y., Xiao, Q., & Xiao, A. F. (2023). Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Marine Drugs, 21(5), 299. https://doi.org/10.3390/md21050299
Karunanayake, A. G., Navarathna, C. M., Gunatilake, S. R., Crowley, M., Anderson, R., Mohan, D., Perez, F., Pittman, C. U., & Mlsna, T. (2019). Fe3O4 Nanoparticles Dispersed on Douglas Fir Biochar for Phosphate Sorption. ACS Applied Nano Materials, 2(6), 3467–3479. https://doi.org/10.1021/acsanm.9b00430
Li, C., Ding, S., Yang, L., Wang, Y., Ren, M., Chen, M., Fan, X., & Lichtfouse, E. (2019). Diffusive gradients in thin films: devices, materials and applications. Environmental Chemistry Letters, 17(2), 801–831. https://doi.org/10.1007/s10311-018-00839-9
Maimulyanti, A., Budiawan, Saefumillah, A., & Suseno, H. (2018). Effect of pH and anion interferences on determination of orthophosphate speciation by diffusive gradient in thin film (DGT) technique. Rasayan Journal of Chemistry, 11(3), 1222–1228. https://doi.org/10.31788/RJC.2018.1133057
Pemerintah Republik Indonesia. (2022). Peraturan Pemerintah Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. In Peraturan Pemerintah. Kementerian Sekretariat Negara Republik Indonesia.
Popescu, I., Constantin, M., Pelin, I. M., Suflet, D. M., Ichim, D. L., Daraba, O. M., & Fundueanu, G. (2022). Eco-Friendly Synthesized PVA/Chitosan/Oxalic Acid Nanocomposite Hydrogels Embedding Silver Nanoparticles as Antibacterial Materials. Gels, 8(5). https://doi.org/10.3390/gels8050268
Puspitasari, H. M., Yunus, A., & Harjoko, D. (2018). Dosis Pupuk Fosfat Terhadap Pertumbuhan Dan Hasil Beberapa Jagung Hibrida. Agrosains, 20(2), 34–39.
Saefumillah, A., & H, R. R. (2015). Pengembangan Metode DGT (Diffusive Gradient In Thin Film) dengan Binding Gel Fe-Al-Oksida dan Pengikat Silang N,N’-Methylenebisacrylamide untuk Penyerapan Fosfat dalam Air. Jurnal Kimia VALENSI, 20–25. https://doi.org/10.15408/jkv.v0i0.3597
Saleh, T. A. (2022). Kinetic models and thermodynamics of adsorption processes: classification. Interface Science and Technology, 34, 65–97. https://doi.org/10.1016/B978-0-12-849876-7.00003-8
Salman, K. D., Abbas, H. H., & Aljawad, H. A. (2021). Synthesis and characterization of MgO nanoparticle via microwave and sol-gel methods. Journal of Physics: Conference Series, 1973(1), 012104. https://doi.org/10.1088/1742-6596/1973/1/012104
Senn, A. C., Kaegi, R., Hug, S. J., Hering, J. G., Mangold, S., & Voegelin, A. (2015). Composition and structure of Fe(III)-precipitates formed by Fe(II) oxidation in water at near-neutral pH: Interdependent effects of phosphate, silicate and Ca. Geochimica et Cosmochimica Acta, 162, 220–246. https://doi.org/10.1016/j.gca.2015.04.032
Shahid, M. K., Kim, Y., & Choi, Y. G. (2019). Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale. Frontiers of Environmental Science and Engineering, 13(5), 71–83. https://doi.org/10.1007/s11783-019-1151-2
Sumbayak, R. J., & Gultom, R. R. (2020). Pengaruh Pemberian Pupuk Fosfat dan Pupuk Organik. Jurnal Darma Agung, 2, 253–268.
Sun, Q., Chen, Y., Xu, D., Wang, Y., & Ding, S. (2013). Investigation of potential interferences on the measurement of dissolved reactive phosphate using zirconium oxide-based DGT technique. Journal of Environmental Sciences (China), 25(8), 1592–1600. https://doi.org/10.1016/S1001-0742(12)60140-5
Udianto, F., Kriswandana, F., & Rachmaniyah. (2022). Pemetaan Kualitas Air Sungai di Kawasan Industri Ngingas Sidoarjo Ditinjau dari Parameter BOD dan TSS Tahun 2021. Jurnal Higiene Sanitasi, 1, 31.
Wang, C. Y., Zhou, H. D., Wang, Q., Xu, B. X., & Zhu, G. (2024). Efficiency and mechanism of phosphate adsorption and desorption of a novel Mg-loaded biochar material. Environmental Science and Pollution Research International, 31(3), 4425–4438. https://doi.org/10.1007/s11356-023-31400-z
Xie, F., Li, L., Sun, X., Hu, T., Song, K., Giesy, J. P., & Wang, Q. (2020). A novel Mg(OH)2 binding layer-based DGT technique for measuring phosphorus in water and sediment. Environmental Science: Processes and Impacts, 22(2), 340–349. https://doi.org/10.1039/c9em00508k
Xie, J., Wang, Z., Lu, S., Wu, D., Zhang, Z., & Kong, H. (2014). Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chemical Engineering Journal, 254, 163–170. https://doi.org/10.1016/j.cej.2014.05.113
Yabuki, L. N. M., Colaço, C. D., Menegário, A. A., Domingos, R. N., Kiang, C. H., & Pascoaloto, D. (2014). Evaluation of diffusive gradients in thin films technique (DGT) for measuring Al, Cd, Co, Cu, Mn, Ni, and Zn in Amazonian rivers. Environmental Monitoring and Assessment, 186(2), 961–969. https://doi.org/10.1007/s10661-013-3430-x
Zhang, H., & Davison, W. (1999). Diffusional characteristics of hydrogels used in DGT and DET techniques. Analytica Chimica Acta, 398, 329–340.
Zhang, Y., Song, J., Zhou, H., Zhang, Y., & Wang, G. (2018). Novel Fe3O4 nanoparticles-based DGT device for dissolved reactive phosphate measurement. New Journal of Chemistry, 42(4), 2874–2881. https://doi.org/10.1039/c7nj04464j
Zhang, Z., Yu, H., Zhu, R., Zhang, X., & Yan, L. (2020). Phosphate adsorption performance and mechanisms by nanoporous biochar–iron oxides from aqueous solutions. Environmental Science and Pollution Research, 27(22), 28132–28145. https://doi.org/10.1007/s11356-020-09166-5
Zheng, S., Sheng, F., Gu, C., Li, Y., Fang, Z., & Luo, J. (2023). DGT method for the in situ measurement of triazines and the desorption kinetics of atrazine in soil. Environmental Science and Pollution Research, 30(17), 51061–51074. https://doi.org/10.1007/s11356-023-25985-8
Zhu, Q., Maeno, S., Sasaki, M., Miyamoto, T., & Fukushima, M. (2015). Monopersulfate oxidation of 2,4,6-tribromophenol using an iron(III)-tetrakis(p-sulfonatephenyl)porphyrin catalyst supported on an ionic liquid functionalized Fe3O4 coated with silica. Applied Catalysis B: Environmental, 163, 459–466. https://doi.org/10.1016/j.apcatb.2014.08.035
Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and its derivatives as supports for enzyme immobilization. In Molecules (Vol. 21, Issue 11). MDPI AG. https://doi.org/10.3390/molecules21111577
DOI: http://dx.doi.org/10.30870/educhemia.v10i1.29113
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Layta Dinira

This work is licensed under a Creative Commons Attribution 4.0 International License.
EduChemia: Jurnal Kimia dan Pendidikan is licensed under a Creative Commons Attribution 4.0 International License
________________________________________________________
EduChemia: Jurnal Kimia dan Pendidikan ISSN 2502-4779 (print) | ISSN 2502-4787 (online)
Published by Department of Chemistry Education - Universitas Sultan Ageng Tirtayasa
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
Email : [email protected]