Review of synthesis Cu2ZnSnS4 using ball-milling method as thin film solar cell absorber layer

Maghfirani Aulia Rachman, Eka Cahya Prima, Andhy Setiawan

Abstract


CZTS (Cu2ZnSnS4) is a readily available, cost-effective, and non-toxic material that uses as a material for absorbing coatings on solar cells. This study aims to examine making CZTS using the Ball-milling method. This method uses a cylindrical grinding machine to reduce coarse materials into more delicate fabrics. The CZTS synthesis process using ball-milling produces better results than other non-sputtering methods. In addition, the synthesis of CZTS using ball-milling can increase the yield of better solar cells. However, in ball-milling, there are still shortcomings, one of which is the presence of heterogeneous elements after the synthesis.


Keywords


Ball milling; CZTS; solar cell; synthesis

Full Text:

PDF

References


Akhavan, V. A., Goodfellow, B. W., Panthani, M. G., Steinhagen, C., Harvey, T. B., Stolle, C. J., & Korgel, B. A. (2012). Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. Journal of Solid State Chemistry, 189, 2-12.

Ashfaq, A., Jacob, J., Bano, N., Nabi, M. A. U., Ali, A., Ahmad, W., . . . Rehman, U. (2019). A two step technique to remove the secondary phases in CZTS thin films grown by sol-gel method. Ceramics International, 45(8), 10876-10881.

Babu, G. S., Kumar, Y. K., Bhaskar, P. U., & Vanjari, S. R. (2010). Effect of Cu/(Zn+ Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films. Solar Energy Materials and Solar Cells, 94(2), 221-226.

Buwarda, S. (2019). AZTS dengan Metode Sol-Gel sebagai Lapisan Buffer Bebas Cadmium pada Sel Surya CZTS. Jurnal Keteknikan dan Sains (JUTEKS), 2(1), 1-7.

Chapin, D. M., Fuller, C., & Pearson, G. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.

Ennaoui, A., Lux-Steiner, M., Weber, A., Abou-Ras, D., Kötschau, I., Schock, H.-W., . . . Hock, R. (2009). Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 517(7), 2511-2514.

Ferdaous, M. T., Shahahmadi, S. A., Chelvanathan, P., Akhtaruzzaman, M., Alharbi, F. H., Sopian, K., . . . Amin, N. (2019). Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis. Solar Energy, 178, 162-172. doi:https://doi.org/10.1016/j.solener.2018.11.055

Green, M. A. (1982). Solar cells: operating principles, technology, and system applications. Englewood Cliffs.

Gu, Y., & Lin, H. (2019). Architecture Optimal Design for Ball-milling-processed Cu_2ZnSnS_4 Light Absorber.

Gu, Y., Yin, X., Han, J., Zhou, Y., Tai, M., Zhang, Q., . . . Lin, H. (2019a). All Solution-Processed Cu2ZnSnS4 Solar Cell by Using High-Boiling-Point Solvent Treated Ball-Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 4(3), 982-989. doi:https://doi.org/10.1002/slct.201804028

Gu, Y., Yin, X., Han, J., Zhou, Y., Tai, M., Zhang, Q., . . . Lin, H. (2019b). All Solution‐Processed Cu2ZnSnS4 Solar Cell by Using High‐Boiling‐Point Solvent Treated Ball‐Milling Process with Efficiency Exceeding 6%. ChemistrySelect, 4(3), 982-989.

Gu, Y., Yin, X., Han, J., Zhou, Y., Tai, M., Zhang, Q., . . . Lin, H. (2019). All‐Layer Sputtering‐Free Cu2Zn1‐xCdxSnS4 Solar Cell with Efficiency Exceeding 7.5%. ChemistrySelect, 4(19), 5979-5983.

Guo, Q., Ford, G. M., Yang, W.-C., Walker, B. C., Stach, E. A., Hillhouse, H. W., & Agrawal, R. (2010). Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. Journal of the American Chemical Society, 132(49), 17384-17386. doi:10.1021/ja108427b

Kahraman, S., Çetinkaya, S., Çetinkara, H., & Güder, H. (2014). A comparative study of Cu2ZnSnS4 thin films growth by successive ionic layer adsorption–reaction and sol-gel methods. Thin Solid Films, 550, 36-39.

Katagiri, H., Jimbo, K., Maw, W. S., Oishi, K., Yamazaki, M., Araki, H., & Takeuchi, A. (2009). Development of CZTS-based thin film solar cells. Thin Solid Films, 517(7), 2455-2460.

Li, C., Yao, B., Li, Y., Xiao, Z., Ding, Z., Zhao, H., . . . Zhang, Z. (2015). Fabrication, characterization and application of Cu2ZnSn (S, Se) 4 absorber layer via a hybrid ink containing ball milled powders. Journal of Alloys and Compounds, 643, 152-158.

Ma, C., Lu, X., Xu, B., Zhao, F., An, X., Li, B., . . . Chu, J. (2020). Effect of CZTS/CdS interfaces deposited with sputtering and CBD methods on Voc deficit and efficiency of CZTS solar cells. Journal of Alloys and Compounds, 817, 153329. doi:https://doi.org/10.1016/j.jallcom.2019.153329

Ojeda-Durán, E., Monfil-Leyva, K., Andrade-Arvizu, J., Becerril-Romero, I., Sánchez, Y., Fonoll-Rubio, R., . . . Muñoz-Zurita, A. (2020). CZTS solar cells and the possibility of increasing VOC using evaporated Al2O3 at the CZTS/CdS interface. Solar Energy, 198, 696-703.

Panatarani, C., Redianti, H., Faizal, F., Cahya Prima, E., Yuliarto, B., & Joni, I. M. (2020). Synthesis and Dispersion of Ni-Doped Cu2ZnSnS4. Key Engineering Materials, 860, 42-50. doi:10.4028/www.scientific.net/KEM.860.42

Pareek, D., Balasubramaniam, K., & Sharma, P. (2016). Synthesis and characterization of kesterite Cu 2 ZnSnTe 4 via ball-milling of elemental powder precursors. RSC Advances, 6(73), 68754-68759.

Patel, S. B., & Gohel, J. V. (2018). Optimization of sol–gel spin-coated Cu 2 ZnSnS 4 (CZTS) thin-film control parameters by RSM method to enhance the solar cell performance. Journal of Materials Science, 53(17), 12203-12213.

Prawira, Y. Y., Prima, E. C., Refantero, G., Setyo, H., & Panatarani, B. Y. (2020). All-Solution-Non-Vacuum Fabrication Process of CZTS Solar Cell using ZTO as Non-Toxic Buffer Layer. International Journal of Nanoelectronics & Materials, 13(2).

Prima, E. C., Wong, L. H., Ibrahim, A., & Yuliarto, B. (2021). Solution-processed pure Cu2ZnSnS4/CdS thin film solar cell with 7.5% efficiency. Optical Materials, 114, 110947.

Pulgarín-Agudelo, F., Vigil-Galán, O., Nicolás-Marín, M., Courel, M., González, R., Mendoza-Leon, H., . . . Oliva, F. (2017). Preparation and characterization of Cu2ZnSnSe4 and Cu2ZnSn (S, Se) 4 powders by ball milling process for solar cells application. Materials Research Express, 4(12), 125501.

Ravindiran, M., & Praveenkumar, C. (2018). Status review and the future prospects of CZTS based solar cell–A novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renewable and Sustainable Energy Reviews, 94, 317-329.

Ricardo, C. A., Su'ait, M., Müller, M., & Scardi, P. (2013). Production of Cu2 (Zn, Fe) SnS4 powders for thin film solar cell by high energy ball milling. Journal of Power Sources, 230, 70-75.

Schubert, B. A., Marsen, B., Cinque, S., Unold, T., Klenk, R., Schorr, S., & Schock, H. W. (2011). Cu2ZnSnS4 thin film solar cells by fast coevaporation. Progress in Photovoltaics: Research and Applications, 19(1), 93-96.

Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 32(3), 510-519. doi:10.1063/1.1736034

Singh, M., Chiang, C.-H., Boopathi, K. M., Hanmandlu, C., Li, G., Wu, C.-G., . . . Chu, C.-W. (2018). A novel ball milling technique for room temperature processing of TiO 2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules. Journal of Materials Chemistry A, 6(16), 7114-7122.

Song, J., Teymur, B., Zhou, Y., Ngaboyamahina, E., & Mitzi, D. B. (2021). Porous Cu2BaSn (S, Se) 4 Film as a Photocathode Using Non-Toxic Solvent and a Ball-Milling Approach. ACS Applied Energy Materials, 4(1), 81-87.

Sun, L., He, J., Chen, Y., Yue, F., Yang, P., & Chu, J. (2012). Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target. Journal of Crystal Growth, 361, 147-151.

Tanaka, K., Fukui, Y., Moritake, N., & Uchiki, H. (2011). Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Solar Energy Materials and Solar Cells, 95(3), 838-842.

Tanaka, K., Oonuki, M., Moritake, N., & Uchiki, H. (2009). Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells, 93(5), 583-587.

Tanaka, T., Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q., Wakahara, A., . . . Ogawa, H. (2005). Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. Journal of Physics and Chemistry of Solids, 66(11), 1978-1981.

Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., & Mitzi, D. B. (2014). Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1301465.

Yao, W., Wang, Y., Wang, L., Wang, X., & Zhang, Z. (2014). Characterization and preparation of Cu2ZnSnS4 thin films by ball-milling, coating and sintering. Materials Letters, 134, 168-171.

Zhang, X., Fu, E., Zheng, M., & Wang, Y. (2019). Fabrication of Cu2ZnSnS4 Thin Films from Ball-Milled Nanoparticle inks under Various Annealing Temperatures. Nanomaterials, 9(11), 1615.




DOI: http://dx.doi.org/10.30870/gravity.v9i1.12348

Refbacks

  • There are currently no refbacks.


Gravity has been indexed by:

     
     

 

  

 

Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is publihed by Department of Physics Education, Universitas Sultan Ageng Tirtayasa jointly with Physical Society of Indonesia (PSI)

Creative Commons License 

Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Copyright © 2020, Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika.