Simulation of neutron production in linac radiotherapy using the monte carlo fluka-flair method
Abstract
The use of high-energy photon beams in radiotherapy aims to increase the effectiveness of the radiation beam so that it can reach tumors that are deeper than the surface of the skin. However, linac aircraft operated above 8 MV can cause photonuclear interactions. Neutrons, which are highly avoided in medical physics, can be generated from the interaction of high-energy photons with materials with high atomic numbers (Z) in linac heads. The study focused on simulating the production of linac 10 MV aircraft contaminant neutrons using Fluka-Flair software based on the Monte Carlo method to find out where the contaminant neutrons come from and their dose contribution to the water phantom. The simulated linac aircraft is a linac head consisting of target components, primary collimator, Flattening filter, ion chamber, Secondary Collimator, and Phantom. The simulation results show that neutrons are generated at the target component, primary collimator, Flattening filter, ion chamber, secondary collimator, and water phantom. Tungsten is the target material with the most excellent 55,08% neutron fluence due to its highest atomic number, Primary Collimator 23,45%, Flattening Filter 10,67%, Ion Chamber 7,58%, Secondary Collimator 3,07% and Phantom 0,15 %.
Keywords
Full Text:
PDFReferences
Abdul Haneefa, K., Cyriac, T. S., Musthafa, M. M., Ganapathi Raman, R., Hridya, V. T., Siddhartha, A., & Shakir, K. K. (2014). FLUKA Monte Carlo for basic dosimetric studies of dual energy medical linear accelerator. Journal of Radiotherapy, 2014.
Alem-Bezoubiri, A., Bezoubiri, F., Badreddine, A., Mazrou, H., & Lounis-Mokrani, Z. (2014). Monte Carlo estimation of photoneutrons spectra and dose equivalent around an 18 MV medical linear accelerator. Radiation Physics and Chemistry, 97, 381-392.
Battistoni, G., Bauer, J., Boehlen, T. T., Cerutti, F., Chin, M. P., Dos Santos Augusto, R., ... & Vlachoudis, V. (2016). The FLUKA code: an accurate simulation tool for particle therapy. Frontiers in oncology, 6, 116.
Hamburg, J. B., Schmidt, R. and Schleper, P. (2007) Simulation of neutron production at a medical linear accelerator.
Mesbahi, A., Keshtkar, A., Mohammadi, E., & Mohammadzadeh, M. (2010). Effect of wedge filter and field size on photoneutron dose equivalent for an 18 MV photon beam of a medical linear accelerator. Applied Radiation and Isotopes, 68(1), 84-89.
Naseri, A., & Mesbahi, A. (2010). A review on photoneutrons characteristics in radiation therapy with high-energy photon beams. Reports of practical oncology and radiotherapy, 15(5), 138-144.
Patil, B. J., Chavan, S. T., Pethe, S. N., Krishnan, R., Bhoraskar, V. N., & Dhole, S. D. (2011). Estimation of neutron production from accelerator head assembly of 15 MV medical LINAC using FLUKA simulations. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(24), 3261-3265.
Ramdani, R., Yani, S., Rhani, M. F., Arif, I., & Haryanto, F. (2015). Commissioning Linear Accelerator Varian Clinac iX Foton Beam 10 MV Menggunakan Simulasi Monte Carlo EGSnrc Code System. Proceedings of Simposium Nasional Inovasi dan Pembelaran Sains, 8-9.
Rogers, D. W. O., Walters, B. R. B. I., & Kawrakow, I., (2005). BEAMnrc Users Manual.
Vega-Carrillo, H. R., Martinez-Ovalle, S. A., Lallena, A. M., Mercado, G. A., & Benites-Rengifo, J. L. (2012). Neutron and photon spectra in LINACs. Applied Radiation and Isotopes, 71, 75-80.
Vlachoudis, V. (2009, May). FLAIR: a powerful but user friendly graphical interface for FLUKA. In Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (Vol. 176).
Yani, S., Tursinah, R., Rhani, M. F., Soh, R. C. X., Haryanto, F. and Arif, I. (2016). Neutron contamination of Varian Clinac IX 10 MV photon beam using Monte Carlo simulation. Journal of Physics: Conference Series, vol. 694(1).
Zanini, A., Durisi, E., Fasolo, F., Ongaro, C., Visca, L., Nastasi, U., ... & Rosner, G. (2004). Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems. Physics in Medicine & Biology, 49(4), 571.
DOI: http://dx.doi.org/10.30870/gravity.v9i1.18979
Refbacks
- There are currently no refbacks.
Gravity has been indexed by:
| Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is publihed by Department of Physics Education, Universitas Sultan Ageng Tirtayasa jointly with Physical Society of Indonesia (PSI) | |
Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License Copyright © 2020, Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika. |