Calculation of sharpness in lung images of pleural effusion patients and normal lung images using the thresholding segmentation method

Indah Nurhidayati, Sinta M Siagian

Abstract


Research on the calculation of tapering from lung's images of patients with pleural effusion and normal lungs has been carrying out using the thresholding segmentation method. The tapering calculation was done using the Matlab programming language by applying the thresholding segmentation method's image processing theory. Images sharpness was obtaining from calculating the longest distance from all distances that were searching in the program. The steps taken in this research were image quality improvement, determination of the region of interest (ROI), thresholding segmentation, and calculating the tilt. Taper count was performing on eight lung images identified pleural effusion and eight lung images identified as normal. In 8 images of lungs pleural effusions, each taper was obtained 166; 159; 167; 167; 150; 157; 114; and 149. Whereas in 8 images of normal lungs, it was obtained that the respective curls were 187; 174; 181; 198; 199; 195; 179; and 195. The analysis showed that the lung's images of pleural effusion patients had a tapering of less than 171. In contrast, normal lung images had a tapering of more than 171, so that one characteristic was obtained that could distinguish between normal lungs and pleural effusions. It can facilitate medical personnel in the early detection of pleural effusion patients so that they can be handled quickly and accurately.


Keywords


Pleural effusion; tapering; thresholding segmentation

Full Text:

PDF

References


Amalia, R.N., & Pradjoko, I. (2016). Nilai Diagnostik Adenosine Deaminase Cairan Pleura Penderita Efusi Pleura Tuberkulosis. Jurnal Respirasi Vol.2 No.2.

Chaubey, A.K. (2016). Comparison of The Local and Global Thresholding Methods in Images Segmentation. World Journal of Research and Riview (WJRR), Vol 2(1): 01-04.

Dwianggita, P. (2016) Etologi Efusi Pleura pada Pasien Rawat Inap di Rumah Sakit Umum Pusat Sanglah, Denpasar, Bali. Jurnal Intisari Sains Medis Vol. 7 No.1.

Fatmasari, A., & Fauzar. (2019). Pleuropericardial Effusion Tuberculosis. Jurnal Kesehatan Andalas Vol.8 No.1.

Godwin, M., Benneth, A., Eugenia, O., Ernest, O., Innocent, C., &

Emmanuel, A. (2015). Pleural Effusion: Aetiology, Clinical Presentation and Mortality Outcome in a Tertiary Health Institution in Eastern Nigeria – A Five Year Retrospective Study. AIDS and Clinical Research, Vol. 6 (2).

Harjanto, A.R., Nurdin, F., & Rahmanoe, M. (2018). Efusi Pleura Sinistra Masif Et Causa TB pada Anak. Majority Vol. 7 No. 3.

Hasan, H., & Ambarwati., D. (2018). Empiema. Jurnal Respirasi Vol.4 No.1.

Maria, E., Yulianto, Arinda, Y.P., Jumiaty, & Nobel, P. (2018). Segmentasi Images Digital Bentuk Daun pada Tanaman di Politani Samarinda Menggunakan Metode Thresholding. JURTI Vol. 2 No.1.

Mau, S.D.B. (2016). Pengaruh Histogram Equalization untuk Perbaikan Kualitas Images Digital. Jurnal SIMETRIS Vol. 7 No. 1.

Nabuasa, Y. N. (2019). Pengolahan Images Digital Perbandingan Metode Histogram Equalization dan Spesification pada Images Abu-abu. J-ICON Vol. 7 No.1.

Pratomo, A.H., Kaswidjanti, W., & Mu’arifah, S. (2020). Implementasi Algoritma Region of Interest (ROI) untuk Meningkatkan Performa Algoritma Deteksi dan Klasifikasi Kendaraan. JTIIK Vol. 7 No.1.

Pranita, N.P.N. (2020). Diagnosis dan Tatalaksana Terbaru Penyakit Pleura. Wellness and HealthyMagazine Vol.2 No.1.

Salmah, S., & Culla, A.S. (2018). Identification of Mycobacterium Tuberculosis by Polymerase Chain Reaction (PCR) Test And its Relationship to MGG Staining of Pleural Fluid in Patients with Suspected Tuberculous Pleural Effusion. Nusantara Medical Science Journal Vol.3 No.2.

Senthilkumaran, N., & Vainthegi, S. (2016). Images Segmentation By Using Thresholding Techniques For Medical Images. Computer Science & Engineering: An International Journal, Vol 6(1).

Situmorang, E., Adi, K., & Setiawati, E. (2014). Deteksi Efusi Pleura pada Images Thorax Menggunakan Jaringan Syaraf Tiruan Propagasi Balik Melalui Ekstrasi Ciri Biner. Youngster Physics Journal Vol. 3 No. 4.

Soe, Z., Aung, Z., & Tun, K.D. (2012). A Clinical study on Malignant Pleural Effusion. International Journal of Collaborative Research on Internal Medicine and Public Health, Vol. 4 (5).

Surjanto, E., Sutanto, Y.S., Aphridasari, J., & Leonardo. (2014). Penyebab Efusi Pleura pada Pasien Rawat Inap di Rumah Sakit. J Respir Indo Vo. 34 No.2.

Voskoglou, M. G. (2013). Application of the Centroid Technique for Measuring Learing Skills. Journal of Mathematical Sciences & Mathematics Education. Vol. 8 No. 2.

Yovi, I., Anggraini, D., & Ammalia, S. (2017). Hubungan karakteristik dan Etiologi Efusi Pleura di RSUD Arifin Achmad Pekanbaru. J Respir Indo Vol. 37 No.2.




DOI: http://dx.doi.org/10.30870/gravity.v6i2.8384

Refbacks

  • There are currently no refbacks.


Gravity has been indexed by:

     
     

 

  

 

Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is publihed by Department of Physics Education, Universitas Sultan Ageng Tirtayasa jointly with Physical Society of Indonesia (PSI)

Creative Commons License 

Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Copyright © 2020, Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika.