3D printing applications in bone fabrication: a review

Evi J, Siska Oktaviyani, Mahjur Mahjur, Fitri Afriani

Abstract


Bone scaffolding is an alternative solution to bone therapy, which is currently being developed in tissue engineering. This effort aims to produce a bone scaffold with a shape and specification according to bone therapy's needs. 3D printing is a scaffold fabrication method with promising prospects because it can produce scaffolding with physical characteristics as needed, both pore and physical. The method used in this article is a formal review to review various national and international literature using articles from 2000 to 2020 with the keywords "scaffold," "3D-printing", "bone," and "natural sources." The results of this article present various aspects regarding the use of 3D printing for scaffolding. Some aspects that are considered are how 3D printing works, the type of material used, and the scaffold's characteristics. It aims to get a clearer picture of the use of 3D printing, both its prospects/potential, application challenges, and future developments.


Keywords


3D-printing, scaffolding, bone

Full Text:

PDF

References


Afriani, F., Indriawati, A., Kurniawan, W., Widyaningrum, Y., Rafsanjani, R., & Tiandho, Y. (2020). Synthesis of porous hydroxyapatite scaffolds from waste cockle shells by polyurethane sponge replication method. Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika, 6(1), 28-33.

An, J., Teoh, J., Suntornnond, R., & Chua, C. (2015). Design and 3D printing of scaffolds and tissues. Engineering, 1(2), 261-268.

Aufan, M., Daulay, A., Indriani, D., Nuruddin, A., & Purwasasmita, B. (2012). Sintesis Scaffold alginat-Kitosan-Karbonat Apatit sebagai bone graft menggunakan metode freeze drying. Jurnal Biofisika, 8(1), 16-24.

Bandyopadhyay, A., Bose, S., & Das, S. (2015). 3D printing of biomaterials. MRS bulletin, 40(2), 108-115.

Castilho, M., Moseke, C., Ewald, A., Gbureck, U., Groll, J., Pires, I., . . . Vorndran, E. (2014). Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 6(1), 015006.

Chou, D., Wells, D., Hong, D., Lee, B., Kuhn, H., & Kumta, P. (2013). Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta biomaterialia, 9(10), 8593-8603.

Davis, R., Hobbs, D., Khashaba, R., Sehkar, P., Seta, F., Messer, R., . . . Wataha, J. (2009). Titanate particles as agents to deliver gold compounds to fibroblasts and monocytes. Journal of Biomedical Materials Research Part A, 93(2), 864-869.

Do, A., Khorsand, B., Geary, S., & Salem, A. (2015). 3D printing of scaffolds for tissue regeneration applications. Advanced healthcare materials, 4(12), 1742-1762.

Geckil, H., Xu, F., Zhang, X., Moon, S., & Demirci, U. (2010). Engineering hydrogels as extracellular matrix mimics. Nanomedicine, 5(3), 469-484.

Hakim, R., Saputra, I., Utama, G., & Setyoadi, Y. (2019). Pengaruh Temperatur Nozzle dan Base Plate Pada Material PLA Terhadap Nilai Masa Jenis dan Kekasaran Permukaan Produk Pada Mesin Leapfrog Creatr 3D Printer. Jurnal Teknologi Dan Riset Terapan (JATRA), 1(1), 1-8.

Hapgood, K., Litster, J., Biggs, S., & Howes, T. (2002). Drop penetration into porous powder beds. Journal of Colloid and Interface Science, 253(2), 353-366.

Hollister, S. (2005). Porous scaffold design for tissue engineering. Nature materials, 4(7), 518-524.

Hribar, K., Soman, P., Warner, J., Chung, P., & Chen, S. (2014). Light-assisted direct-write of 3D functional biomaterials. Royal Society of Chemistry, 14(2), 268-275.

Ikhsanto, L., & Zainuddin, Z. (2019). Analisa Kekuatan Bending Filamen ABD dan PLA pada Hasil 3D Printer dengan Variasi Suhu Nozzle. Media Mesin: Majalah Teknik Mesin, 2(1), 9-17.

Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterial, 26(27), 5474-5491.

Keleş, Ö., Blevins, C. W., & Bowman, K. J. (2017). Effect of build orientation on the mechanical reliability of 3D printed ABS. Rapid Prototyping Journal, 23(2), 320-328.

Leukers, B., Gülkan, H., Irsen, S., Milz, S., Tille, C., Schieker, M., & Seitz, H. (2005). Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. Journal of Materials Science: Materials in Medicine, 16(12), 1121-1124.

Liu, J., & Yan, C. (2018). 3D printing of scaffolds for tissue engineering (7 ed.). (C. D., Ed.) UK: Intech Open.

Loh, Q. L., & Choong, C. (2013). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Engineering Part B: Reviews, 19(6), 485-502.

Putra, I. R., & Tontowi, A. (2019). Properti Mekanik Material [Sagu/PMMA] “3D-Printable”. Prosiding SENIATI, 320-323.

Putra, K., & Sari, U. (2018). Pemanfaatan Teknologi 3D Printing Dalam Proses Desain Produk Gaya Hidup. Seminar Nasional Sistem Informasi dan Teknologi Informasi, 917-922.

Shirazi, S., Gharehkhani, S., Mehrali, M., Yarmand, H., Metselaar, H., Kadri, N., & Osman, N. (2015). A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and technology of advanced materials, 16(3), 1-20.

Thomas, J., Thomas, S., Kalarikkal, N., & Jose, J. (2018). Nanoparticles in Polymer Systems for Biomedical Applications. CRC Press.

Vasconcellos, L., Oliveira, M., Graça, M., Vasconcellos, L., Carvalho, Y., & Cairo, C. (2008). Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Materials Research, 11(3), 275-280.

Wataha, J., Hobbs, D., Wong, J., Dogan, S., Zhang, H., Chung, K., & Elvington, M. (2010). Titanates deliver metal ions to human monocytes. Journal of Materials Science: Materials in Medicine, 21(4), 1289-1295.

Wu, C., Fan, W., Zhou, Y., Luo, Y., Gelinsky, M., Chang, J., & Xiao, Y. (2012). 3D-printing of highly uniform CaSiO 3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. Journal of Materials Chemistry, 22(24), 12288-12295.

Wüst, S., Müller, R., & Hofmann, S. (2011). Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. Journal of functional biomaterials, 2(3), 119-154.




DOI: http://dx.doi.org/10.30870/gravity.v7i1.9541

Refbacks

  • There are currently no refbacks.


Gravity has been indexed by:

     
     

 

  

 

Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is publihed by Department of Physics Education, Universitas Sultan Ageng Tirtayasa jointly with Physical Society of Indonesia (PSI)

Creative Commons License 

Gravity : Jurnal Ilmiah Penelitian dan Pembelajaran Fisika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Copyright © 2020, Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika.