Load Forecasting Energi Listrik Provinsi Banten Tahun 2022-2030 Menggunakan Metode Backpropagation Neural Network
Abstract
Full Text:
PDFReferences
M. Binoto, Y. Kristiawan, and J. R. S.-B. Km, “PERAMALAN ENERGI LISTRIK YANG TERJUAL DAN DAYA LISTRIK TERSAMBUNG PADA SISTEM KETENAGLISTRIKAN UNTUK JANGKA PANJANG DI SOLO MENGGUNAKAN MODEL ARTIFICIAL NEURAL NETWORK,” 2015.
M. A. Hammad, B. Jereb, B. Rosi, and D. Dragan, “Methods and Models for Electric Load Forecasting: A Comprehensive Review,” Logist. Sustain. Transp., vol. 11, no. 1, pp. 51–76, Feb. 2020, doi: 10.2478/jlst-2020-0004.
Hartono, A. Marifa Ahmad, and M. Sadikin, “Comparison methods of short term electrical load forecasting,” MATEC Web Conf., vol. 218, p. 01002, 2018, doi: 10.1051/matecconf/201821801002.
V. Veeramsetty and R. Deshmukh, “Electric power load forecasting on a 33/11 kV substation using artificial neural networks,” SN Appl. Sci., vol. 2, no. 5, p. 855, May 2020, doi: 10.1007/s42452-020-2601-y.
Y. Muharni, A. Irman, and M. Ilhamsyah, “Prediction of Grinding Work Roll Demand in a Job Shop Company By using Artificial Neural Network and ARIMA Method,” MATEC Web Conf., vol. 218, p. 04004, 2018, doi: 10.1051/matecconf/201821804004.
S. Kumar and S. K. Joshi, “Estimation of Load Forecast – 2020 Using Artificial Neural Network and Exploration,” vol. 3, no. 2.
Hartono, A. Marifa Ahmad, and M. Sadikin, “Comparison methods of short term electrical load forecasting,” MATEC Web Conf., vol. 218, p. 01002, 2018, doi: 10.1051/matecconf/201821801002.
DOI: http://dx.doi.org/10.36055/joseam.v2i1.19265
Refbacks
- There are currently no refbacks.
is supported by
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International