Analysis of Computational Thinking Test Using Bioinformatics Database: A Convergent Parallel Mixed‐Methods Study

Indah Juwita Sari, R. Ahmad Zaky El Islami, Muhammad Rafik

Abstract


Computational thinking is an approach to understanding and solving complex problems by applying computational concepts and techniques. This study uses a bioinformatics database to analyze the computational thinking test question items qualitatively and quantitatively. The method used in this study is mixed, with the research design being a convergent parallel design. The qualitative data collection technique is a sheet of suggestions, inputs, and comments from experts in assessment in education, computational thinking, and bioinformatics. In contrast, the quantitative data collection technique is an expert assessment sheet and a test of questions to 127 pre-service biology teachers by producing reliability values and an infit-outfit index. The results obtained qualitatively show that CTT has high recency and complexity, and there are improvements related to the language and multiple answer options used. The quantitative results showed that the computational thinking problem was included in the very feasible category with a value of 91.83; the reliability value that was included in the category was very low, but each item was included in the accepted category with an infit-outfit index range of 0.7-1.3. Based on these results, following up on the measurement of students' computational thinking more widely using CTT is interesting.


Keywords


Computational thinking test; Bioinformatics database; Pre-service biology teachers

Full Text:

PDF

References


Ali, M. M., Hamid, M., Saleem, M., Malik, S., Mian, N. A., Ihsan, M. A., ... & Awan, F. 2021, Status of bioinformatics education in South Asia: past and present. BioMed research international, vol. 2021.

Angeli, C., & Giannakos, M 2020, Computational thinking education: Issues and challenges. Computers in human behavior, vol. 105, 106185.

Avinç, E., & Doğan, F 2024, Digital Literacy Scale: Validity and Reliability Study with the Rasch Model. Education and Information Technologies.https://doi.org/10.1007/s10639-024-12662-7

Barr, V., & Stephenson, C 2011, Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community?. ACM inroads, vol. 2, no.1, 48-54.

Belmar, H 2022, Review on the teaching of programming and computational thinking in the world. Frontiers in Computer Science, vol. 4, 997222.

Boom, K. D., Bower, M., Siemon, J., & Arguel, A 2022, Relationships between computational thinking and the quality of computer programs. Education and information technologies, vol. 27, no.6, 8289-310.

Budiharti, D. R., Susilaningsih, E., Haryani, S., & Wardani, S 2023, Pengembangan Instrumen Pilihan Ganda Kompleks Bermuatan Indikator Creative Thinking Ability pada Materi Larutan Penyangga. Journal Chemistry in Education, vol. 12, no. 2, 189-97.

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G 2017, Changing a generation’s way of thinking: Teaching computational thinking through programming. Review of Educational Research, vol. 87, no.4, 834-60.

Creswell J. W., Plano Clark V 2011, Designing and Conducting Mixed Methods Research. Thousand Oaks, CA: Sage.

Dow, E. G., Wood-Charlson, E. M., Biller, S. J., Paustian, T., Schirmer, A., Sheik, C. S., ... & Arkin, A. P 2022, Bioinformatic Teaching Resources–For Educators, by Educators–KBase, a Free, User-Friendly, Open Source Platform. Original Strategies for Training and Educational Initiatives in Bioinformatics.

Fanani, M. Z 2018, Strategi Pengembangan Soal Higher Order Thinking Skill (HOTS) dalam Kurikulum 2013. Jurnal of Islamic Religious Education, vol. 2, no.1, 57-76.

Fessakis, G., & Prantsoudi, S 2019, Computer Science Teachers' Perceptions, Beliefs and Attitudes on Computational Thinking in Greece. Informatics in Education, vol. 18, no.2, 227-58.

Gatherer, D 2020, Reflections on integrating bioinformatics into the undergraduate curriculum: The Lancaster experience. Biochemistry and Molecular Biology Education, vol. 48, no.2, 118-27.

Grover, S., & Pea, R 2013, Computational thinking in K–12: A review of the state of the field. Educational researcher, vol. 42, no. 1, 38-43.

Hadiyanti, H., Susongko, P., & Munadi. (2024). Pengembangan Instrumen Higher Order Thinking Skill Mata Pelajaran Matematika dengan Rasch Model. Journal of Education Research, vol. 5, no.1, 399–407.

Ilannur, A., Wulan, A. R., & Diana, S. (2020). Studi Butir Soal IPA Pokok Bahasan Biologi di SMP Tentang Keterampilan Menjelaskan Fenomena Secara Ilmiah. Jurnal Penelitian Pendidikan, vol. 20, no.2, 163-73.

Ioannou, A., & Makridou, E 2018, Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work. Education and Information Technologies, vol. 23, no.6, 2531-44.

Johnston, I., Slater, M., & Cazier, J. B 2021, Interdisciplinary and transferable concepts in bioinformatics education: observations and approaches from a UK MSc course.

Juldial, T. U. H. & Haryadi, R 2024, Analisis Keterampilan Berpikir Komputasional dalam Proses Pembelajaran. Jurnal Basicedu, vol. 8, no.1, 136-144.

Kadir, A. 2015, Menyusun dan Menganalisis Tes Hasil Belajar. Jurnal A-Ta’dib, vol.8, no.2, 70-81.

Kong, S. C., Chiu, M. M., & Lai, M 2018 A study of primary school students' interest, collaboration attitude, and programming empowerment in computational thinking education. Computers & education, vol. 127, 178-89.

Lee, I., Martin, F., & Apone, K 2014, Integrating computational thinking across the K--8 curriculum. Acm Inroads, vol. 5, no.4, 64-71.

Lee, K., & Cho, J 2021, Computational Thinking Evaluation Tool Development for Early Childhood Software Education. JOIV: International Journal on Informatics Visualization, vol. 5, no.3, 313-19.

Mahrus, Idrus, A. A., Hadisaputra, S., & Syauki, M. L 2021, Pemanfaatan Media Pohon Filogenetik Ikan Teri Berbasis Hasil Penelitian untuk Mengatasi Kesulitan Belajar Materi Keragaman Genetik pada Mata Pelajaran Biologi Siswa MAN 2 Mataram. Jurnal Pengabdian Magister Pendidikan IPA, vol. 5, no.4, 246-51.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014, June). Computational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1-29).

Marhadi, A., Darmansyah, Fitria, Y 2023, Keterampilan Berpikir Komputasi Bagi Siswa: Tinjauan Pustaka. Jurnal Cendikia Pendidikan Dasar, vol. 1, no.2, 48-52.

Mariano, D., Martins, P., Helene Santos, L., & de Melo‐Minardi, R. C 2019, Introducing programming skills for life science students. Biochemistry and Molecular Biology Education, vol. 47, no.3, 288-95.

Martins, A., Lencastre, L., & Tavares, F 2018, Integrating bioinformatics in elementary and secondary education: teacher's perceptions. III Encontro Internacional de Formação na Docência (INCTE): livro de atas.

Merino-Armero, J. M., González-Calero, J. A., & Cozar-Gutierrez, R 2022, Computational thinking in K-12 education. An insight through meta-analysis. Journal of Research on Technology in Education, vol. 54, no.3, 410-37.

Norasit, N., Pongsophon, P., Vongsangnak, W., & Anuworrachai, S 2023, Development of Computational Thinking of Tenth–Grade Students Using Basic Bioinformatics Practices. Journal of Research Unit on Science, Technology, and Environment for Learning, vol. 14, no. 2, 179-97.

Nurfadillah, A., Amir, N. I., Asrun, B., Firani, L. S., & Bunga, J 2023, Pengenalan Bioinformatika, Aplikasi dan Database pada Siswa-Siswi SMK Laniang Makassar. Jurnal Pengabdian Masyarakat Bidang Sains dan Teknologi, vol. 2, no.1, 108-14.

Pérez-Marín, D., Hijón-Neira, R., Bacelo, A., & Pizarro, C 2020, Can computational thinking be improved by using a methodology based on metaphors and scratch to teach computer programming to children?. Computers in Human Behavior, vol. 105, 105849.

Pewkam, W., & Chamrat, S 2022, Pre-service Teacher Training Program of STEM-based Activities in Computing Science to Develop Computational Thinking. Informatics in Education, vol. 21, no.2, 311-29.

Pucker, B., Schilbert, H. M., and Schumacher, S. F. Integrating Molecular Biology and Bioinformatics Education. Journal of Integrative Bioinformatics, vol. 16, no. 3, 2019, pp. 20190005. https://doi.org/10.1515/jib-2019-0005

Rodríguez del Rey, Y. A., Cawanga Cambinda, I. N., Deco, C., Bender, C., Avello‐Martínez, R., & Villalba‐Condori, K. O 2021, Developing computational thinking with a module of solved problems. Computer Applications in Engineering Education, vol. 29, no.3, 506-16.

Sardi, A 2022, Bioinformatics: Challenges in Integrating Biological Information. Jurnal Biologi Tropis, vol. 22, no.4, 1297-1301.

Sari, I. J., El Islami, R. A. Z., & Safkolam, R 2022, Implementation of Bioinformatics Learning in Senior High School: A Systematic Review. International Journal of Biology Education Towards Sustainable Development, vol. 2, no.2, 87-98.

Sari, I. J., Vongsangnak, W., & Pongsophon, P 2021, THE ANALYSIS OF ITEM DIFFICULTIES OF COMPUTATIONAL THINKING TEST USING RASCH MODEL. 2021 International Conference of East-Asian Association for Science Education. 212-213.

Sari, I. J., Vongsangnak, W., & Pongsophon, P 2022, The Effect of Bioinformatics Module on Molecular Genetics Concepts on Senior High School Students' Computational Thinking Skills. Shanlax International Journal of Education, vol. 10, no.2, 9-17.

Savika, H. I. & Zuhriyah, I. A 2024, Peran Analisis Butir Soal terhadap Kualitas Soal, Kompetensi Guru, dan Prestasi Belajar Peserta Didik di Sekolah Dasar. Jurnal Pendidikan Anak dan Pendidikan Umum, vol. 2, no.2, 1-9.

Shue, E., Liu, L., Li, B., Feng, Z., Li, X., & Hu, G 2023, Empowering beginners in bioinformatics with ChatGPT, Quantitative Biology, vol. 11, no. 2, 105-08.

So, H. J., Jong, M. S. Y., & Liu, C. C 2020, Computational thinking education in the Asian Pacific region. The Asia-Pacific Education Researcher, vol. 29, 1-8.

Takács, R., Kárász, J. T., Takács, S., Horváth, Z., & Oláh, A. (2021). Applying the Rasch Model to Analyze the Effectiveness of Education Reform in Order to Decrease Computer Science Students' Dropout. Humanities and Social Sciences Communications, vol. 8, no.1, 1–8. https://doi.org/10.1057/s41599-021- 00725-w

Tikva, C. & Tambouris, E. (2021). A Systematic Mapping Study on Teaching and Learning Computational Thinking Through Programming in Higher Education. Journal of Thinking Skills and Creativity, vol. 4, 100849. https://doi.org/10.1016/j.tsc.2021.100849

Zapata-Cáceres, M., Marcelino, P., El-Hamamsy, L., & Martín-Barroso, E 2024, A Bebras Computational Thinking (ABC-Thinking) Program for Primary School: Evaluation Using the Competent Computational Thinking Test. Education and Information Technologies, 1-30




DOI: http://dx.doi.org/10.30870/jppi.v10i2.28572

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Penelitian dan Pembelajaran IPA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

Jurnal Penelitian dan Pembelajaran IPA is licensed under a Creative Commons Attribution 4.0 International License

Copyright © 2024 Jurnal Penelitian dan Pembelajaran IPA. All rights reserved.