Design and development of temperature and humidity control system using PID and Labview on a 20 kV cubicle

Imelda Uli Vistalina simanjuntak, Agung Yoke Basuki, Lukman Medriavin, Muhammad Yusuf

Abstract


Damage to the 20 kV cubicle at PLN Branch Lahat often occurs because the overheater causes considerable losses. Insulation failure at the corroded cubicle terminal results in a decrease in heat production and heater resistance. So there is a mall function (saturated) and a short circuit. Therefore, this study aims to design a prototype to maintain temperature and humidity conditions in a 20 kV cell using Proportional Integral Derivatives (PID) and LabVIEW. Set the Kp, Kd, and Ki parameters, namely proportional, derivative, and integral constants, so that the desired temperature can be maintained to prevent corrosion. The parameter value was obtained at the set point of 40 °C by a value of Kp is 1, Ki is 0.1, and Kd is 0.05, resulting in a rise time of 188 s, a peak time of 216 s, stabilization of 288 s, and a steady-state error of 0.30%. In addition, the setpoint is 43°C, the rise time is 272 s, the peak time is 311 s, the settling time is 377 s, and the steady-state error is 0.60%. Moreover, the 45°C setpoint has a rise time of 338 s, a peak time of 380 s, a settling time of 448 s, and a steady-state error of 0.93%. These results indicate a reasonably good prototype performance.

Keywords


20 kV cubicle, PID, proportional constant (Kp), integral constant (Ki), and derivative constant (Kd)

References


Asraf, H. M., Nur Dalila, K. A., Muhammad Hakim, A. W., & Muhammad Faizzuan Hon, R. H. (2017). Development of experimental simulator via arduino-based PID temperature control system using LabVIEW. Journal of Telecommunication, Electronic and Computer Engineering, 9(1–5), 53–57. https://www.semanticscholar.org/paper/Development-of-Experimental-Simulator-via-PID-using-Asraf-Dalila/962a28abe80a1f95f970fa2fbae776d018bf6b16

Bu, Q., Cai, J., Liu, Y., Cao, M., Dong, L., Ruan, R., & Mao, H. (2021). The effect of fuzzy PID temperature control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis. Journal of Analytical and Applied Pyrolysis, 158(December 2020), 105176. https://doi.org/10.1016/j.jaap.2021.105176

David O, A., & Stephen, O. (2014). Poultry House Temperature Control Using Fuzzy-PID Controller. International Journal of Engineering Trends and Technology, 11(6), 310–314. https://doi.org/10.14445/22315381/ijett-v11p259

Deshmukh, G. L., & Kadu, C. B. (2017). Design of two degree of freedom PID controller for temperature control system. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 586–589. https://doi.org/10.1109/ICACDOT.2016.7877653

Feng, B., Gong, G., & Yang, H. (2009). Self-tuning-parameter fuzzy PID temperature control in a large hydraulic system. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July 14-17, 2009, 1418–1422.

Hamid, N. H. A., Kamal, M. M., & Yahaya, F. H. (2009). Application of PID controller in controlling refrigerator temperature. Proceedings of 2009 5th International Colloquium on Signal Processing and Its Applications, CSPA 2009, 378–384. https://doi.org/10.1109/CSPA.2009.5069255

Huang, H., Zhang, S., Yang, Z., Tian, Y., Zhao, X., Yuan, Z., Hao, S., Leng, J., & Wei, Y. (2018). Modified Smith fuzzy PID temperature control in an oil-replenishing device for deep-sea hydraulic system. Ocean Engineering, 149(July 2017), 14–22. https://doi.org/10.1016/j.oceaneng.2017.11.052

Jamil, A. A., Tu, W. F., Ali, S. W., Terriche, Y., & 4, J. M. G. (2022). Fractional-Order PID Controllers for Temperature Control: A Review. Energies, 15(3800), 1–28. https://doi.org/https:// doi.org/10.3390/en15103800

Jiang, W., & Jiang, X. (2012). Design of an intelligent temperature control system based on the fuzzy self-tuning PID. Procedia Engineering, 43, 307–311. https://doi.org/10.1016/j.proeng.2012.08.053

Jun, Z., & Kanyu, Z. (2011). A particle swarm optimization approach for optimal design of PID controller for temperature control in HVAC. Proceedings - 3rd International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2011, 1(2), 230–233. https://doi.org/10.1109/ICMTMA.2011.63

Kumar, Y. V. P., Rajesh, A., Yugandhar, S., & Srikanth, V. (2013). Cascaded PID Controller Design for Heating Furnace Temperature Control. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 5(3), 76–83. https://doi.org/10.9790/2834-0537683

Li, R., Wu, F., Hou, P., & Zou, H. (2020). Performance Assessment of FO-PID Temperature Control System Using a Fractional Order LQG Benchmark. IEEE Access, 8, 116653–116662. https://doi.org/10.1109/ACCESS.2020.3004701

Liang, H., Sang, Z. K., Wu, Y. Z., Zhang, Y. H., & Zhao, R. (2021). High precision temperature control performance of a PID neural network-controlled heater under complex outdoor conditions. Applied Thermal Engineering, 195(June), 117234. https://doi.org/10.1016/j.applthermaleng.2021.117234

Moreno, V. M., & Gorur, R. S. (2001). Effect of long-term corona on non-ceramic outdoor insulator housing materials. IEEE Transactions on Dielectrics and Electrical Insulation, 8(1), 117–128. https://doi.org/10.1109/94.910434

Możaryn, J., Petryszyn, J., & Ozana, S. (2021). PLC based fractional-order PID temperature control in pipeline: design procedure and experimental evaluation. Meccanica, 56(4), 855–871. https://doi.org/10.1007/s11012-020-01215-0

Mugisha, J. C., Munyazikwiye, B., & Karimi, H. R. (2016). Design of temperature control system using conventional PID and Intelligent Fuzzy Logic controller. iFUZZY 2015 - 2015 International Conference on Fuzzy Theory and Its Applications, Conference Digest, 50–55. https://doi.org/10.1109/iFUZZY.2015.7391893

P., M. G. A., & Kaloko, B. S. (2017). Rancang Bangun Kontrol Pid Pada Speed Observer Generator Dc Berbasis Arduino Uno. ROTOR Universitas Jember, 10(April), 67–72. https://doi.org/https://doi.org/10.19184/rotor.v10i1.5151

PT.PLN. (2010). Direktori Karya inovasi xiii 2010. http://inovasipln.co.id/data/direktori_inovasi/dir2010.pdf, 1–124. http://inovasipln.co.id/index.php/amio/direktori

Salehi, D., & Brandt, M. (2006). Melt pool temperature control using LabVIEW in Nd:YAG laser blown powder cladding process. International Journal of Advanced Manufacturing Technology, 29(3–4), 273–278. https://doi.org/10.1007/s00170-005-2514-3

Shi, D., Gao, G., Gao, Z., & Xiao, P. (2012). Application of expert fuzzy PID method for temperature control of heating furnace. Procedia Engineering, 29, 257–261. https://doi.org/10.1016/j.proeng.2011.12.703

Shu, H., & Pi, Y. (2005). Decoupled Temperature Control System Based on PID Neural Network. ACSE 05 Conference, December, 19–21. https://www.semanticscholar.org/paper/Decoupled-Temperature-Control-System-Based-on-PID-Shu-Pi/1935bc49b07450fa529ff38edc359e4f9ddd277d

Suguna, R., Usha, V., & Chidambaram, S. (2014). A Temperature Control by Using PID Based Scr Control System. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 51–55. https://doi.org/10.9790/2834-09285155

Sungthong, A., & Assawinchaichote, W. (2016). Particle Swam Optimization Based Optimal PID Parameters for Air Heater Temperature Control System. Procedia Computer Science, 86(March), 108–111. https://doi.org/10.1016/j.procs.2016.05.027

Supegina, F., & Setiawan, E. J. (2017). Rancang Bangun Iot Temperature Controller Untuk Enclosure Bts Berbasis Microcontroller Wemos Dan Andro. Jurnal TeknologiE Elektro Universitas Mercu Buana, 8(2), 145–150. https://doi.org/http://dx.doi.org/10.22441/jte.v8i2.1611

Swain, K. B., Santamanyu, G., & Senapati, A. R. (2017). Smart industry pollution monitoring and controlling using LabVIEW based IoT. 2017 IEEE 3rd International Conference on Sensing, Signal Processing and Security (ICSSS) Smart, 74–78. https://doi.org/10.1109/SSPS.2017.8071568

Thakor, M. D., Hadia, S. K., & Kumar, A. (2015). Precise temperature control through Thermoelectric Cooler with PID controller. 2015 International Conference on Communication and Signal Processing, ICCSP 2015, 1118–1122. https://doi.org/10.1109/ICCSP.2015.7322677

Wati, D. A. R., & Hidayat, R. (2013). Genetic algorithm-based PID parameters optimization for air heater temperature control. Proceedings of 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems, ROBIONETICS 2013, 1, 30–34. https://doi.org/10.1109/ROBIONETICS.2013.6743573

Yu, H., Jia, J., Chen, G., & Chen, X. (2011). Temperature control of electric furnace based on fuzzy PID. ICEOE 2011 - 2011 International Conference on Electronics and Optoelectronics, Proceedings, 3, 41–44. https://doi.org/10.1109/ICEOE.2011.6013295




DOI: http://dx.doi.org/10.30870/volt.v7i1.12024

Refbacks

  • There are currently no refbacks.



VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro is licensed under a Creative Commons Attribution 4.0 International License

________________________________________________________
VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro ISSN 2528-5688 (print) | ISSN 2528-5696 (online)
Published by Department of Electrical Engineering Vocational Education - Universitas Sultan Ageng Tirtayasa in collaboration with Asosiasi Dosen dan Guru Vokasi Indonesia (ADGVI) - Association of Indonesian Vocational Educators (AIVE)
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
E   : volt.jipte@untirta.ac.id, abi.mustofa@untirta.ac.id, m.abihamid@gmail.com
Ph : +62 8566666090 / +62 81298509170