Robot Classifying of Gas using Support Vector Machine Method

Moch Fachri, Nyayu Latifah Husni, Ekawati Prihatini


Fires often happen in the environment of industrial chemical plant caused by harmful gases. To minimize the incident that can be triggered by the gas it takes a tool capable of classifying gases are in the environment industry. The purpose of this research is to know the success in classifying gas on a fire that was triggered by the dangerous gases. We offer solutions in design and build a mobile robot that can classify objects contain hazardous gases by using the method of pattern recognition, the age of the SVM is still relatively young. Nevertheless, the advantages of SVM compared to another method lies in its ability to find the best hyperplane that separates the two class. Based on the results of testing data can classify SVM managed in accordance with the class. The degree of accuracy achieved SVM in classifying reached 86.66 %.


Support Vector Machine; Classification; Hyperplane; Sensor TGS

Full Text:



Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

Byun, H., & Lee, S.-W. (2003). A survey on pattern recognition applications of support vector machines. International Journal of Pattern Recognition and Artificial Intelligence, 17(03), 459–486.

Dinambar, B. P., Sari, D. P., & Irdayanti, Y. (2017). Analysis of The Measurement of PH Levels and Levels of Water Clarity on The Ship’s Robot. VOLT : Jurnal Ilmiah Pendidikan Teknik Elektro, 2(2), 133.

F.A Novianti, S. . P. (2012). Analisis Diagnosis Pasien Kanker Payudara Menggunakan Regresi Logistik dan Support Vector, 1(1).

Hidayatullah, T. (2014). Kajian Komparasi Penerapan Algoritma Support Vector Machine (SVM) dan Multilayer Perceptron (MLP) dalam Prediksi Indeks Saham Sektor Perbankan.

Li, J.-G., Meng, Q.-H., Wang, Y., & Zeng, M. (2010). Single odor source declaration in outdoor time-variant airflow environments. In 2010 IEEE International Conference on Robotics and Biomimetics (pp. 143–148). IEEE.

Lilienthal, A., Ulmer, H., Frohlich, H., Stutzle, A., Werner, F., & Zell, A. (2004). Gas source declaration with a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 (p. 1430–1435 Vol.2). IEEE.

Loutfi, A., Coradeschi, S., Karlsson, L., & Broxvall, M. (2005). Putting olfaction into action: using an electronic nose on a multi-sensing mobile robot. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) (Vol. 1, pp. 337–342). IEEE.

Nugroho, A. S., Witarto, A. B., & Handoko, D. (2003). Support Vector Machine-Teori dan Aplikasinya dalam Bioinformatika 1. Retrieved from

Oktarina, Y., Nawawi, M., & Tulak, W. G. (2017). Analysis of The Sensor Line on Line Follower Robot as an Alternative Transport The Tub Trash in The Shopping Center. VOLT : Jurnal Ilmiah Pendidikan Teknik Elektro, 2(2), 101.

Pratama, Y. W., Dewi, T., & Oktarina, Y. (2017). Analysis and Design of Obstacle Avoidance on Robot Detection of Pipe Cracked. VOLT : Jurnal Ilmiah Pendidikan Teknik Elektro, 2(2), 167.

Redden, E. S., Pettitt, R. A., Carstens, C. B., & Elliott, L. R. (2008). Scalability of Robotic Displays: Display Size Investigation. Retrieved from

Rendyansyah. (2015). Implementasi Kendali Logika Fuzzy dan Pengenalan Pola Support Vector Machine Pada Olfactory Arm Mobile Robot untuk Identifikasi Gas.

Suryadi, U. T. (2015). Komparasi Support Vector Machine dan Neural Network untuk Prediksi Kelulusan Sertifikasi Benih Kentang. Seminar Nasional Informatika (SEMNASIF), 1(1). Retrieved from

Trincavelli, M., & Loutfi, A. (2010). Feature selection for gas identification with a mobile robot. In 2010 IEEE International Conference on Robotics and Automation (pp. 2852–2857). IEEE.



  • There are currently no refbacks.

VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro is licensed under a Creative Commons Attribution 4.0 International License

VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro ISSN 2528-5688 (print) | ISSN 2528-5696 (online)
Published by Department of Electrical Engineering Vocational Education - Universitas Sultan Ageng Tirtayasa in collaboration with Asosiasi Dosen dan Guru Vokasi Indonesia (ADGVI) - Association of Indonesian Vocational Educators (AIVE)
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
E   :,,
Ph : +62 8566666090 / +62 81298509170