Analysis and Design of Obstacle Avoidance on Robot Detection of Pipe Cracked

Yudha Wira Pratama, Tresna Dewi, Yurni Oktarina


Pipe robot is a robot capable of moving inside the pipe. The function of the pipe robot is to monitor pipe defects. The pipe robot is designed to move steadily in the center position inside the pipe. HCSR-04 distance sensor required input to give distance value to the microcontroller so that robot keep running stable and balance, for movement of the robot using DC motor. This robot is made with the aim to move autonomously following the pipeline in detecting pipe cracks. Programming on this robot using Artificial Neural Network algorithm with the Backpropogation method of network structure, consist of 3 input layer, 3 output layer, and 20 hidden layers. Conducted experiments on inputs, hidden layers, and outputs with varying amounts to obtain robust network structure of efficient and precise movement of robots in detecting pipe cracks. The result of movement of the robot in the application of Artificial Neural Network algorithm with Backpropagation method is able to move well and more stable. In this case, it uses 2 ultrasonic sensors and 2 motor outputs. The average robot speed movement is 10 cm/sec.


Backpropogation; HCSR-04; Autonomous; Artificial Neural Network

Full Text:



Anindya, C., Fuada, S., Firmansyah, S., & Lestari, D. (2014). Rancang Bangun Prototype Robot Pipe Tracking dengan Electric Nose Technology sebagai Detektor Kebocoran. Program Kreativitas Mahasiswa-Karsa Cipta. Malang: Jurusan Pendidikan Teknik Elektro FT UNM

Brethes, L., Menezes, P., Lerasle, F., & Hayet, J. (2004, April). Face tracking and hand gesture recognition for human-robot interaction. In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on (Vol. 2, pp. 1901-1906). IEEE.

Hachour, O. (2008). Path planning of Autonomous Mobile Robot. International journal of systems applications, engineering & development, 2(4), 178-190.

Hamid, N. A., Nawi, N. M., Ghazali, R., & Salleh, M. N. M. (2011). Improvements of back propagation algorithm performance by adaptively changing gain, momentum and learning rate. International Journal of New Computer Architectures and their Applications (IJNCAA), 1(4), 866-878.

Irfandy, M., Hidayatno, A., & Darjat, D. (2011). Aplikasi Pengenalan Ucapan Dengan Jaringan Syaraf Tiruan Propagasi Balik Untuk Pengendalian Robot Bergerak (Doctoral dissertation, Jurusan Teknik Elektro Fakultas Teknik Undip).

Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. International Journal of Engineering Trends and Technology, 3(6), 714-717.

Lin, W. S., & Yang, P. C. (2008). Adaptive critic motion control design of autonomous wheeled mobile robot by dual heuristic programming. Automatica, 44(11), 2716-2723.

Pakaja, F., Naba, A., & Purwanto, P. (2012). Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Jurnal EECCIS, 6(1), 23-28.

Pitowarno, E. (2006). Robotika desain, kontrol, dan kecerdasan buatan. Yogyakarta: Penerbit Andi.

Vernon, D. (1991). Machine vision-Automated visual inspection and robot vision. NASA STI/Recon Technical Report A, 92.



  • There are currently no refbacks.

VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro is licensed under a Creative Commons Attribution 4.0 International License

VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro ISSN 2528-5688 (print) | ISSN 2528-5696 (online)
Published by Department of Electrical Engineering Vocational Education - Universitas Sultan Ageng Tirtayasa in collaboration with Asosiasi Dosen dan Guru Vokasi Indonesia (ADGVI) - Association of Indonesian Vocational Educators (AIVE)
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
E   :,,
Ph : +62 8566666090 / +62 81298509170