Implementation of Naive Bayes Classifier Algorithm to Evaluation in Utilizing Online Hotel Tax Reporting Application

R. Dimas Adityo, Herti Miawarni


The current implementation of tax reporting regional Pasuruan hotels have used online (Web-based), with the aim of reporting systems can run effectively and efficiently in receiving the financial statements especially from taxpayer property. Pasuruan as one small town quite rapidly in East Java, have implemented role models online tax filing system starting in 2015, with the amount of 6 hotels, there are several classes of hotels ranging from the budget class up to class three stars. After the application of the system running for 18 months (2015-2016), from existing data, conducted research on the analysis of the level of compliance of taxpayers reporting incomes in a hotel. On the research was designed and built a system to evaluate the level of compliance with the performance from the taxpayer (WP) in the 2nd year (2016) and are classified in categories (1) the taxpayer (WP) very obedient (ST), (2) the taxpayer (WP) is quite obedient (CT), (3) Taxpayers (WP) less obedient (KT). Input data will be processed using the technique of data mining algorithms Naive Bayes Classifier (NBC) to form the table of probability as a basis for the process of classification levels of taxpayer compliance. Based on the results of the measurement, the test results show with an accuracy of 50% i.e. 3 taxpayers is the very obedient (ST) to pay taxes. Then from the classification, the study could be made of recommendation solutions to guide the taxpayer in reporting revenues well and true.


Classification; Naïve Bayes; Online System; online tax application

Full Text:



Adityo, R. D., & Krisdiyono, F. (2015). Sistem Informasi Pelaporan Pajak Hotel Secara Online Pada Dinas Pendapatan Kota Pasuruan (Jawa Timur). Prosiding Seminar Nasional Teknologi dan Informatika (SNATIF). Kudus: Universitas Muria Kudus.

Bustami, B. (2013). Penerapan Algoritma Naïve Bayes Untuk Mengklasifikasi Data Na-sabah Asuransi. TECHSI-Jurnal Teknik Informatika, 3(2).

Fitriani, I. R. (2014). Peningkatan Metode Naive Bayes Classification untuk Penentuan Tingkat Keganasan Kanker Payudara Menggunakan Particle Swarm Optimiza-tion. (Graduate Thesis). Retrieved from

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.

Jatmika, W. (2009). Deteksi Kanker Payudara Menggunakan Ekstraksi Fitur Statistical Pada Citra Mammogram Berbasis Jaringan Syaraf Tiruan. (Graduate Thesis). Universitas Muria Kudus, Kudus.

Prasetyo, E. (2014). Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta: Andi Offset.

Ridwan, M., Suyono, H., & Sarosa, M. (2013). Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Jurnal EECCIS, 7(1), 59-64.

Santosa, B. (2007). Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

Yuda, N. S. (2014). Data Mining Menggunakan Algoritma Naïve Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro (Studi Kasus: Fakultas Ilmu Komputer Angkatan 2009). Skripsi, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Semarang.



  • There are currently no refbacks.

VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro is licensed under a Creative Commons Attribution 4.0 International License

VOLT: Jurnal Ilmiah Pendidikan Teknik Elektro ISSN 2528-5688 (print) | ISSN 2528-5696 (online)
Published by Department of Electrical Engineering Vocational Education - Universitas Sultan Ageng Tirtayasa in collaboration with Asosiasi Dosen dan Guru Vokasi Indonesia (ADGVI) - Association of Indonesian Vocational Educators (AIVE)
Address : Jl. Ciwaru Raya No. 25, Sempu, Kota Serang, Banten 42117, Indonesia
E   :,,
Ph : +62 8566666090 / +62 81298509170