TiO2/Chitosan bioplastic as Antibacterial of Stephylococcus aureus for Food Preservation

Indar Kustiningsih, Dhena Ria Barleany, Devi Abriyani, Asep Ridwan, Muhammad Syairazy, Mochamad Adha Firdaus

Abstract


Nowadays, bioplastic development become hot trends to assess environmental issues. Many materials have been purposed to be the best resources for bioplastic manufacturing. Chitosan is one of the most abundant resources in which could derivates from biomaterial waste called chitin. TiO2 nanoparticles incorporation within biomaterial presumably not only enhance its mechanical properties but also improve biocompatibility of medical characteristic such as bacterial annihilation. From this study, it was shown that small amount of TiO2 nanoparticles within chitosan bioplastic prove improvement of both characteristic. Nevertheless, it was also slightly increasing material durability to degrade.

Full Text:

PDF

References


Amir, M. N. I., Julkapli, N. M., & Hamid, S. B. A. (2016). Incorporation of chitosan and glass substrate for improvement in adsorption, separation, and stability of TiO2 photodegradation. International Journal of Environmental Science and Technology, 13(3), 865-874. doi:10.1007/s13762-015-0914-y

Amrulia, W. (2012). Uji Aktivitas Antibakteri Kitosan-TiO2 Pada Tekstil Terhadap Eschericia coli. [Antibacteria activity test of chitosan - TiO2 on textile material for Eschericia coli].

Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch-chitosan blend biodegradable film. Lwt-Food Science and Technology, 41(9), 1633-1641. doi:10.1016/j.lwt.2007.10.014

Cai, R. X., Kubota, Y., Shuin, T., Sakai, H., Hashimoto, K., & Fujishima, A. (1992). Induction of Cytotoxicity by Photoexcited Tio2 Particles. Cancer Research, 52(8), 2346-2348. Retrieved from ://WOS:A1992HN84200036

Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. doi:10.1016/j.ijfoodmicro.2007.12.017

de Azeredo, H. M. C. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253. doi:10.1016/j.foodres.2009.03.019

Diaz-Visurraga, J., Melendrez, M. F., Garcia, A., Paulraj, M., & Cardenas, G. (2010). Semitransparent Chitosan-TiO2 Nanotubes Composite Film for Food Package Applications. Journal of Applied Polymer Science, 116(6), 3503-3515. doi:10.1002/app.31881

Dompeipen, E. J. (2017). Isolasi dan identifikasi kitim dan kitosan dari kulit udang windu (Penaeus monodon) dengan spektroskopi inframerah, Majalah BIAM, (2017), 12.

Fathanah, U., Lubis, M. R., Nasution, F., & Masyawi, M. S. (2018). Characterization of bioplastic based from cassava crisp home industrial waste incorporated with chitosan and liquid smoke. 3rd International Conference on Chemical Engineering Sciences and Applications 2017 (3rd Icchesa 2017), 334. doi:Unsp 012073

1088/1757-899x/334/1/012073

Ginting, M. H. S., Lubis, M., Sidabutar, T., & Sirait, T. P. (2018). The effect of increasing chitosan on the characteristics of bioplastic from starch talas (Colocasia esculenta) using plasticizer sorbitol. Friendly City 4 from Research to Implementation for Better Sustainability, 126. doi:Unsp 012147

1088/1755-1315/126/1/012147

Gumiero, M., Peressini, D., Pizzariello, A., Sensidoni, A., Iacumin, L., Comi, G., & Toniolo, R. (2013). Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chemistry, 138(2-3), 1633-1640. doi:10.1016/j.foodchem.2012.10.139

Haldorai, Y., & Shim, J. J. (2014). Novel Chitosan-TiO2 Nanohybrid: Preparation, Characterization, Antibacterial, and Photocatalytic Properties. Polymer Composites, 35(2), 327-333. doi:10.1002/pc.22665

Jeffery, B., Peppler, M., Lima, R. S., & McDonald, A. (2010). Bactericidal Effects of HVOF-Sprayed Nanostructured TiO2 on Pseudomonas aeruginosa. Journal of Thermal Spray Technology, 19(1-2), 344-349. doi:10.1007/s11666-009-9369-3

Kanmani, P., & Rhim, J. W. (2014a). Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry, 148, 162-169. doi:10.1016/j.foodchem.2013.10.047

Kanmani, P., & Rhim, J. W. (2014b). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190-199. doi:10.1016/j.carbpol.2014.02.007

Kashif, S. A., & Park, J. K. (2019). Enzymatically Hydrolyzed Water-Soluble Chitosan as a Potent Anti-Microbial Agent. Macromolecular Research, 27(6), 551-557. doi:10.1007/s13233-019-7095-3

Kustiningsih I, Ridwan A, Abriyani D, Syairazy M, Kurniawan T, Barleany D. R. Development of Chitosan-TiO2 Nanocomposite for Packaging Film and its Ability to Inactive Staphylococcus Aureus. Orient J Chem 2019;35(3). Available from: https://bit.ly/2MUXwF1

Liu, H. L., & Yang, T. C. K. (2003). Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochemistry, 39(4), 475-481. doi:10.1016/S0032-9592(03)00084-0

Logpriya, S., Bhuvaneshwari, V., Vaidehi, D., SenthilKumar, R. P., Malar, R. S. N., Sheetal, B. P., . . . Kalaiselvi, M. (2018). Preparation and characterization of ascorbic acid-mediated chitosan-copper oxide nanocomposite for anti-microbial, sporicidal and biofilm-inhibitory activity. Journal of Nanostructure in Chemistry, 8(3), 301-309. doi:10.1007/s40097-018-0273-6

Mallakpour, S., & Madani, M. (2015). Effect of Functionalized TiO2 on Mechanical, Thermal and Swelling Properties of Chitosan-Based Nanocomposite Films. Polymer-Plastics Technology and Engineering, 54(10), 1035-1042. doi:10.1080/03602559.2014.974194

Mazin C., T., A., Anandapadmanabhan, Ashfaq, Mujeeb, A., dan Lobo, A. G. (2015). Study on the Effect of Nano TiO2 on Mechanical Properties of Chitosan. IOSR Journal of Mechanical and Civil Engineering, 12(3), 7. doi:10.9790/1684-12314854

Naito, P. K., Ogawa, Y., Sawada, D., Nishiyama, Y., Iwata, T., & Wada, M. (2016). X-ray Crystal Structure of Anhydrous Chitosan at Atomic Resolution. Biopolymers, 105(7), 361-368. doi:10.1002/bip.22818

Nikkhoo, M., Amini, M., Farnia, S. M. F., Mandavinia, G. R., Gautam, S., & Chae, K. H. (2018). Preparation and Characterization of Magnetic Chitosan/Cu-Mg-Al Layered Double Hydroxide Nanocomposite for the One-Pot Three-Component (A(3)) Coupling of Aldehydes, Amines and Alkynes. Journal of Inorganic and Organometallic Polymers and Materials, 28(5), 2028-2035. doi:10.1007/s10904-018-0861-4

Nishiyama, M., Hosokawa, J., Yoshihara, K., Kubo, T., Kabeya, H., Endo, T., & Kitagawa, R. (1996). Biodegradable plastics derived from cellulose fiber and chitosan. Hydrophilic Polymers, 248, 113-123. Retrieved from ://WOS:A1996BE65L00007

Ogawa, Y., Naito, P. K., & Nishiyama, Y. (2019). Hydrogen-bonding network in anhydrous chitosan from neutron crystallography and periodic density functional theory calculations. Carbohydrate Polymers, 207, 211-217. doi:10.1016/j.carbpol.2018.11.042

Panariello, L., Coltelli, M. B., Buchignani, M., & Lazzeri, A. (2019). Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. European Polymer Journal, 113, 328-339. doi:10.1016/j.eurpolymj.2019.02.004

Paspaltsis, I., Kotta, K., Lagoudaki, R., Grigoriadis, N., Poulios, I., & Sklaviadis, T. (2006). Titanium dioxide photocatalytic inactivation of prions. Journal of General Virology, 87, 3125-3130. doi:10.1099/vir.0.81746-0

Rafieian, F., Shahedi, M., Keramat, J., & Simonsen, J. (2014). Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Industrial Crops and Products, 53, 282-288. doi:10.1016/j.indcrop.2013.12.016

Rhim, J. W. (2011). Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydrate Polymers, 86(2), 691-699. doi:10.1016/j.carbpol.2011.05.010

Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008

Rohmawati, B., Sya'idah, F. A. N., Rhismayanti, Alighiri, D., & Eden, W. T. (2018). Synthesis of Bioplastic-based Renewable Cellulose Acetate from Teak Wood (Tectona grandis) Biowaste Using Glycerol-Chitosan Plasticizer. Oriental Journal of Chemistry, 34(4), 1810-1816. doi:10.13005/ojc/3404014

Tsuang, Y. H., Sun, J. S., Huang, Y. C., Lu, C. H., Chang, W. H. S., & Wang, C. C. (2008). Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artificial Organs, 32(2), 167-174. doi:10.1111/j.1525-1594.2007.00530.x

Zheng, H., Maness, P. C., Blake, D. M., Wolfrum, E. J., Smolinski, S. L., & Jacoby, W. A. (2000). Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry, 130(2-3), 163-170. doi:Doi 10.1016/S1010-6030(99)00205-1




DOI: http://dx.doi.org/10.62870/wcej.v5i1.12115

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 World Chemical Engineering Journal

WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).

This Journal has been indexed by:

  1. Google Scholar
  2. Garuda
  3. Dimensions
  4. Crossref
  5. Open Academic Journal Index
  6. Journal Impact Factor
  7. Cite Factor 
Archives: Resources | Dimensions CrossrefJIFACTOR, Journal Indexing  

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.