Potential and Opportunity of Co-Firing Power Plant in Indonesia Through Torrefaction of Empty Fruit Bunch (EFB) - A Review

Anton Irawan

Abstract


Electricity was an important requirement for various activities. Currently, the level of electricity consumption in Indonesia was around 1000 kWh/capita/year and is expected to continue to increase towards developed countries with a minimum electricity consumption level of 3000 kWh/capita/year.  Along with the increasing demand for electricity, many new power plants were being built in Indonesia using coal as fuel. Coal was a non-renewable fuel so the CO2 gas produced has an impact on global warming. Co-Firing was a technology for combining fuel of biomass and coal in order to reduce the use of coal. The difference in the quality of biomass and coal was an obstacle to getting a stable combustion performance so it is necessary to improve the quality of biomass. The torrefaction technology can be implemented to improve the quality of biomass in Indonesia so it can be used as fuel for a co-firing power plant. One of the most potential biomass was empty fruit bunch (EFB) from palm oil processing with a potential of around 48 million tons per year or equivalent to 30 GW.  Every Oil palm mills plant that process 25 ton/hour of fresh oil palm fruit bunches can produce EFB around  5.25 ton/hour. With so many palm oil plants, torrefaction technology can be used to store EFB torrefied which can change the properties of biomass from hydrophilic to hydrophobic. The government's role to support the use of biomass, including EFB, is very much needed in increasing cooperation between palm oil mills and power plants.

Full Text:

PDF

References


Agbor, E., Oyedun, A. O., Zhang, X., & Kumar, A. (2016). Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Applied Energy, 169. https://doi.org/10.1016/j.apenergy.2016.02.018

Agbor, E., Zhang, X., & Kumar, A. (2014). A review of biomass co-firing in North America. In Renewable and Sustainable Energy Reviews (Vol. 40). https://doi.org/10.1016/j.rser.2014.07.195

Akhtar, A., Krepl, V., & Ivanova, T. (2018). A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. In Energy and Fuels. https://doi.org/10.1021/acs.energyfuels.8b01678

Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. Biomass and Bioenergy, 34(5). https://doi.org/10.1016/j.biombioe.2010.01.004

Al-Naiema, I., Estillore, A. D., Mudunkotuwa, I. A., Grassian, V. H., & Stone, E. A. (2015). Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel, 162. https://doi.org/10.1016/j.fuel.2015.08.054

Ali Akhmad Noor Hidayat. (2019). ESDM: Kebutuhan Listrik Nasional Naik 6,9 Persen Tiap Tahun. Tempo Online. https://bisnis.tempo.co/read/1254541/esdm-kebutuhan-listrik-nasional-naik-69-persen-tiap-tahun

Ali Sayigh. (2012). Comprehensive renewable energy. Elsevier.

Andersson, M., & Tillman, A. ‐M. (1989). Acetylation of jute: Effects on strength, rot resistance, and hydrophobicity. Journal of Applied Polymer Science, 37(12). https://doi.org/10.1002/app.1989.070371214

Aviso, K. B., Sy, C. L., & Tan, R. R. (2019). Fuzzy optimization of direct and indirect biomass co-firing in power plants. Chemical Engineering Transactions, 76. https://doi.org/10.3303/CET1976010

Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: Practical design and theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/C2016-0-04056-1

Basu, P., Butler, J., & Leon, M. A. (2011). Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renewable Energy, 36(1). https://doi.org/10.1016/j.renene.2010.06.039

Baxter, L. (2005). Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel, 84(10). https://doi.org/10.1016/j.fuel.2004.09.023

Bergman, P., Boersma, A., Kiel, J., Prins, M. J., Ptasinski, K., & Janssen, F. J. (2005). Torrefaction for entrained-flow gasification of biomass. 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, a.

Boafo, D. K., Kraisornpornson, B., Panphon, S., Owusu, B. E., & Amaniampong, P. N. (2020). Effect of organic soil amendments on soil quality in oil palm production. Applied Soil Ecology, 147. https://doi.org/10.1016/j.apsoil.2019.09.008

BPS. (2020). Statistik Kelapa Sawit Indonesia 2019. https://www.bps.go.id/publication/2020/11/30/36cba77a73179202def4ba14/statistik-kelapa-sawit-indonesia-2019.html

BPS. (2021). Hasil Sensus Penduduk 2020. https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html

Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. In Renewable and Sustainable Energy Reviews (Vol. 44). https://doi.org/10.1016/j.rser.2014.12.039

Chen, W. H., Tu, Y. J., & Sheen, H. K. (2011). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88(8). https://doi.org/10.1016/j.apenergy.2011.02.027

Chiew, Y. L., & Shimada, S. (2013). Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy, 51. https://doi.org/10.1016/j.biombioe.2013.01.012

Clancy, J. M., Curtis, J., & Ó’Gallachóir, B. (2018). Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030 – Interactions, impacts and conflicts. Energy Policy, 123. https://doi.org/10.1016/j.enpol.2018.08.012

Dai, J., Sokhansanj, S., Grace, J. R., Bi, X., Lim, C. J., & Melin, S. (2008). Overview and some issues related to co-firing biomass and coal. In Canadian Journal of Chemical Engineering (Vol. 86, Issue 3). https://doi.org/10.1002/cjce.20052

Demirbaş, A. (2003). Sustainable cofiring of biomass with coal. In Energy Conversion and Management (Vol. 44, Issue 9). https://doi.org/10.1016/S0196-8904(02)00144-9

ESDM. (2020). Statistik Ketenagalistrikan Tahun 2019. https://gatrik.esdm.go.id/frontend/download_index?kode_category=statistik

Felfli, F. F., Luengo, C. A., Suárez, J. A., & Beatón, P. A. (2005). Wood briquette torrefaction. Energy for Sustainable Development, 9(3). https://doi.org/10.1016/S0973-0826(08)60519-0

Hambali, E., & Rivai, M. (2017). The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030. IOP Conference Series: Earth and Environmental Science, 65(1). https://doi.org/10.1088/1755-1315/65/1/012050

Humas EBTKE. (2020). Kapasitas Pembangkit Naik Jadi 69,6 GW, EBT Sumbang 10,3 GW. ESDM. https://ebtke.esdm.go.id/post/2020/02/10/2473/kapasitas.pembangkit.naik.jadi.696.gw.ebt.sumbang.103.gw

IEA. (2018). Data and statistics. IEA. https://www.iea.org/data-and-statistics?country=INDONESIA&fuel=Energy consumption&indicator=ElecConsPerCapita

International Energy Agency (IEA). (2016). Energy and Air Pollution: World Energy Outlook Special Report. Comprehensive Energy Systems, 1–5.

Irawan, A., Alwan, H., Satria, D., Saepurohman, F., & Kurniawan, A. (2019). Increased energy content of rice husk through torrefaction to produce quality solid fuel. AIP Conference Proceedings, 2085. https://doi.org/10.1063/1.5094999

Irawan, A., Latifah Upe, S., & Meity Dwi, I. P. (2017). Effect of torrefaction process on the coconut shell energy content for solid fuel. AIP Conference Proceedings, 1826. https://doi.org/10.1063/1.4979226

Irawan, Anton, Riadz, T., & Nurmalisa, N. (2015). PROSES TOREFAKSI TANDAN KOSONG KELAPA SAWIT UNTUK KANDUNGAN HEMISELULOSA DAN UJI KEMAMPUAN PENYERAPAN AIR. Reaktor. https://doi.org/10.14710/reaktor.15.3.190-194

Karampinis, E., Grammelis, P., Agraniotis, M., Violidakis, I., & Kakaras, E. (2014). Co-firing of biomass with coal in thermal power plants: Technology schemes, impacts, and future perspectives. Wiley Interdisciplinary Reviews: Energy and Environment, 3(4). https://doi.org/10.1002/wene.100

Kumar, L., Koukoulas, A. A., Mani, S., & Satyavolu, J. (2017). Integrating torrefaction in the wood pellet industry: A critical review. In Energy and Fuels (Vol. 31, Issue 1). https://doi.org/10.1021/acs.energyfuels.6b02803

Loha, C., Chattopadhyay, H., Chatterjee, P. K., & Majumdar, G. (2020). Co-Firing of Biomass to Reduce CO2 Emission. In Encyclopedia of Renewable and Sustainable Materials. https://doi.org/10.1016/b978-0-12-803581-8.11006-9

Mahidin;, Erdiwansyah;, Zaki, M., Hamdani;, Hisbullah, & Mamat;, R. (2019). An overview of the potential and utilization of biomass for heat energy in Indonesia. Researchgate.Net, 9(10).

McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1). https://doi.org/10.1016/S0960-8524(01)00118-3

Mobini, M., Meyer, J. C., Trippe, F., Sowlati, T., Fröhling, M., & Schultmann, F. (2014). Assessing the integration of torrefaction into wood pellet production. Journal of Cleaner Production, 78. https://doi.org/10.1016/j.jclepro.2014.04.071

Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. In Renewable and Sustainable Energy Reviews (Vol. 94). https://doi.org/10.1016/j.rser.2018.06.042

Murphy, F., & McDonnell, K. (2017). Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy, 104. https://doi.org/10.1016/j.enpol.2017.01.042

Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M. K., & Chatterjee, P. K. (2016). Present status and overview of Chemical Looping Combustion technology. In Renewable and Sustainable Energy Reviews (Vol. 59). https://doi.org/10.1016/j.rser.2016.01.003

Niu, Y., Tan, H., & Hui, S. (2016). Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. In Progress in Energy and Combustion Science (Vol. 52). https://doi.org/10.1016/j.pecs.2015.09.003

Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2020). Recent advances in carbon capture storage and utilisation technologies: a review. In Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01133-3

Park, S. W., & Jang, C. H. (2012). Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy, 39(1). https://doi.org/10.1016/j.energy.2012.01.031

Pimchuai, A., Dutta, A., & Basu, P. (2010). Torrefaction of agriculture residue to enhance combustible properties. Energy and Fuels, 24(9). https://doi.org/10.1021/ef901168f

Priyanto, D. E., Matsunaga, Y., Ueno, S., Kasai, H., Tanoue, T., Mae, K., & Fukushima, H. (2017). Co-firing high ratio of woody biomass with coal in a 150-MW class pulverized coal boiler: Properties of the initial deposits and their effect on tube corrosion. Fuel, 208. https://doi.org/10.1016/j.fuel.2017.07.053

Priyanto, D. E., Ueno, S., Sato, N., Kasai, H., Tanoue, T., & Fukushima, H. (2016). Ash transformation by co-firing of coal with high ratios of woody biomass and effect on slagging propensity. Fuel, 174. https://doi.org/10.1016/j.fuel.2016.01.072

Pudasainee, D., Kurian, V., & Gupta, R. (2020). Coal: Past, present, and future sustainable use. In Future Energy: Improved, Sustainable and Clean Options for Our Planet. https://doi.org/10.1016/B978-0-08-102886-5.00002-5

Ribeiro, J. M. C., Godina, R., Matias, J. C. de O., & Nunes, L. J. R. (2018). Future perspectives of biomass torrefaction: Review of the current state-of-the-art and research development. In Sustainability (Switzerland) (Vol. 10, Issue 7). https://doi.org/10.3390/su10072323

Roni, M. S., Chowdhury, S., Mamun, S., Marufuzzaman, M., Lein, W., & Johnson, S. (2017). Biomass co-firing technology with policies, challenges, and opportunities: A global review. In Renewable and Sustainable Energy Reviews (Vol. 78). https://doi.org/10.1016/j.rser.2017.05.023

Sami, M., Annamalai, K., & Wooldridge, M. (2001). Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science, 27(2). https://doi.org/10.1016/S0360-1285(00)00020-4

Sampson, G. R., Richmond, A. P., Brewster, G. A., & Gasbarro, A. F. (1991). Cofiring of Wood Chips with Coal in Interior Alaska. Forest Products Journal, 41(5).

Samuelsson, R., Burvall, J., & Jirjis, R. (2006). Comparison of different methods for the determination of moisture content in biomass. Biomass and Bioenergy, 30(11). https://doi.org/10.1016/j.biombioe.2006.06.004

Shukla, A. K., Ahmad, Z., Sharma, M., Dwivedi, G., Verma, T. N., Jain, S., Verma, P., & Zare, A. (2020). Advances of carbon capture and storage in coal-based power generating units in an indian context. In Energies (Vol. 13, Issue 6). https://doi.org/10.3390/en13164124

Singh, R., & Setiawan, A. D. (2013). Biomass energy policies and strategies: Harvesting potential in India and Indonesia. In Renewable and Sustainable Energy Reviews (Vol. 22). https://doi.org/10.1016/j.rser.2013.01.043

Speight, J. G. (2021). Clean Coal Technologies for Power Generation. In Coal‐Fired Power Generation Handbook 2nd Edition. https://doi.org/10.1002/9781119510116.ch13

Suárez-Ruiz, I., Diez, M. A., & Rubiera, F. (2018). New trends in coal conversion: Combustion, gasification, emissions, and coking. In New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking. https://doi.org/10.1016/C2016-0-04039-1

Tillman, D. A. (2000). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19(6). https://doi.org/10.1016/S0961-9534(00)00049-0

Uemura, Y., Omar, W., Othman, N. A., Yusup, S., & Tsutsui, T. (2013). Torrefaction of oil palm EFB in the presence of oxygen. Fuel, 103. https://doi.org/10.1016/j.fuel.2011.11.018

Ungureanu, N., Vladut, V., Voicu, G., Dinca, M. N., & Zabava, B. S. (2018). Influence of biomass moisture content on pellet properties - Review. Engineering for Rural Development, 17. https://doi.org/10.22616/ERDev2018.17.N449

van Loo, S., & Koppejan, J. (2012). The handbook of biomass combustion and co-firing. In The Handbook of Biomass Combustion and Co-Firing. https://doi.org/10.4324/9781849773041

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. In Fuel (Vol. 89, Issue 5). https://doi.org/10.1016/j.fuel.2009.10.022

Verma, M., Loha, C., Sinha, A. N., & Chatterjee, P. K. (2017). Drying of biomass for utilising in co-firing with coal and its impact on environment – A review. In Renewable and Sustainable Energy Reviews (Vol. 71). https://doi.org/10.1016/j.rser.2016.12.101

Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2021). Progress in carbon capture technologies. Science of the Total Environment, 761. https://doi.org/10.1016/j.scitotenv.2020.143203

Xu, Y., Yang, K., Zhou, J., & Zhao, G. (2020). Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093692

Yang, B., Wei, Y. M., Hou, Y., Li, H., & Wang, P. (2019). Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage. Applied Energy, 252. https://doi.org/10.1016/j.apenergy.2019.113483

Yao, X., Zhou, H., Xu, K., Xu, Q., & Li, L. (2020). Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust. Renewable Energy, 145. https://doi.org/10.1016/j.renene.2019.06.087

Zhang, Y. (2019). Coal-fired power plants and pollutant emissions. In Advances in Ultra-low Emission Control Technologies for Coal-Fired Power Plants. https://doi.org/10.1016/B978-0-08-102418-8.00001-2




DOI: http://dx.doi.org/10.62870/wcej.v5i1.12139

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 World Chemical Engineering Journal

WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).

This Journal has been indexed by:

  1. Google Scholar
  2. Garuda
  3. Dimensions
  4. Crossref
  5. Open Academic Journal Index
  6. Journal Impact Factor
  7. Cite Factor 
Archives: Resources | Dimensions CrossrefJIFACTOR, Journal Indexing  

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.