Potential and Opportunity of Co-Firing Power Plant in Indonesia Through Torrefaction of Empty Fruit Bunch (EFB) - A Review
Abstract
Full Text:
PDFReferences
Agbor, E., Oyedun, A. O., Zhang, X., & Kumar, A. (2016). Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Applied Energy, 169. https://doi.org/10.1016/j.apenergy.2016.02.018
Agbor, E., Zhang, X., & Kumar, A. (2014). A review of biomass co-firing in North America. In Renewable and Sustainable Energy Reviews (Vol. 40). https://doi.org/10.1016/j.rser.2014.07.195
Akhtar, A., Krepl, V., & Ivanova, T. (2018). A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. In Energy and Fuels. https://doi.org/10.1021/acs.energyfuels.8b01678
Al-Mansour, F., & Zuwala, J. (2010). An evaluation of biomass co-firing in Europe. Biomass and Bioenergy, 34(5). https://doi.org/10.1016/j.biombioe.2010.01.004
Al-Naiema, I., Estillore, A. D., Mudunkotuwa, I. A., Grassian, V. H., & Stone, E. A. (2015). Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel, 162. https://doi.org/10.1016/j.fuel.2015.08.054
Ali Akhmad Noor Hidayat. (2019). ESDM: Kebutuhan Listrik Nasional Naik 6,9 Persen Tiap Tahun. Tempo Online. https://bisnis.tempo.co/read/1254541/esdm-kebutuhan-listrik-nasional-naik-69-persen-tiap-tahun
Ali Sayigh. (2012). Comprehensive renewable energy. Elsevier.
Andersson, M., & Tillman, A. ‐M. (1989). Acetylation of jute: Effects on strength, rot resistance, and hydrophobicity. Journal of Applied Polymer Science, 37(12). https://doi.org/10.1002/app.1989.070371214
Aviso, K. B., Sy, C. L., & Tan, R. R. (2019). Fuzzy optimization of direct and indirect biomass co-firing in power plants. Chemical Engineering Transactions, 76. https://doi.org/10.3303/CET1976010
Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: Practical design and theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. https://doi.org/10.1016/C2016-0-04056-1
Basu, P., Butler, J., & Leon, M. A. (2011). Biomass co-firing options on the emission reduction and electricity generation costs in coal-fired power plants. Renewable Energy, 36(1). https://doi.org/10.1016/j.renene.2010.06.039
Baxter, L. (2005). Biomass-coal co-combustion: Opportunity for affordable renewable energy. Fuel, 84(10). https://doi.org/10.1016/j.fuel.2004.09.023
Bergman, P., Boersma, A., Kiel, J., Prins, M. J., Ptasinski, K., & Janssen, F. J. (2005). Torrefaction for entrained-flow gasification of biomass. 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, a.
Boafo, D. K., Kraisornpornson, B., Panphon, S., Owusu, B. E., & Amaniampong, P. N. (2020). Effect of organic soil amendments on soil quality in oil palm production. Applied Soil Ecology, 147. https://doi.org/10.1016/j.apsoil.2019.09.008
BPS. (2020). Statistik Kelapa Sawit Indonesia 2019. https://www.bps.go.id/publication/2020/11/30/36cba77a73179202def4ba14/statistik-kelapa-sawit-indonesia-2019.html
BPS. (2021). Hasil Sensus Penduduk 2020. https://www.bps.go.id/pressrelease/2021/01/21/1854/hasil-sensus-penduduk-2020.html
Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. In Renewable and Sustainable Energy Reviews (Vol. 44). https://doi.org/10.1016/j.rser.2014.12.039
Chen, W. H., Tu, Y. J., & Sheen, H. K. (2011). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88(8). https://doi.org/10.1016/j.apenergy.2011.02.027
Chiew, Y. L., & Shimada, S. (2013). Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy, 51. https://doi.org/10.1016/j.biombioe.2013.01.012
Clancy, J. M., Curtis, J., & Ó’Gallachóir, B. (2018). Modelling national policy making to promote bioenergy in heat, transport and electricity to 2030 – Interactions, impacts and conflicts. Energy Policy, 123. https://doi.org/10.1016/j.enpol.2018.08.012
Dai, J., Sokhansanj, S., Grace, J. R., Bi, X., Lim, C. J., & Melin, S. (2008). Overview and some issues related to co-firing biomass and coal. In Canadian Journal of Chemical Engineering (Vol. 86, Issue 3). https://doi.org/10.1002/cjce.20052
Demirbaş, A. (2003). Sustainable cofiring of biomass with coal. In Energy Conversion and Management (Vol. 44, Issue 9). https://doi.org/10.1016/S0196-8904(02)00144-9
ESDM. (2020). Statistik Ketenagalistrikan Tahun 2019. https://gatrik.esdm.go.id/frontend/download_index?kode_category=statistik
Felfli, F. F., Luengo, C. A., Suárez, J. A., & Beatón, P. A. (2005). Wood briquette torrefaction. Energy for Sustainable Development, 9(3). https://doi.org/10.1016/S0973-0826(08)60519-0
Hambali, E., & Rivai, M. (2017). The Potential of Palm Oil Waste Biomass in Indonesia in 2020 and 2030. IOP Conference Series: Earth and Environmental Science, 65(1). https://doi.org/10.1088/1755-1315/65/1/012050
Humas EBTKE. (2020). Kapasitas Pembangkit Naik Jadi 69,6 GW, EBT Sumbang 10,3 GW. ESDM. https://ebtke.esdm.go.id/post/2020/02/10/2473/kapasitas.pembangkit.naik.jadi.696.gw.ebt.sumbang.103.gw
IEA. (2018). Data and statistics. IEA. https://www.iea.org/data-and-statistics?country=INDONESIA&fuel=Energy consumption&indicator=ElecConsPerCapita
International Energy Agency (IEA). (2016). Energy and Air Pollution: World Energy Outlook Special Report. Comprehensive Energy Systems, 1–5.
Irawan, A., Alwan, H., Satria, D., Saepurohman, F., & Kurniawan, A. (2019). Increased energy content of rice husk through torrefaction to produce quality solid fuel. AIP Conference Proceedings, 2085. https://doi.org/10.1063/1.5094999
Irawan, A., Latifah Upe, S., & Meity Dwi, I. P. (2017). Effect of torrefaction process on the coconut shell energy content for solid fuel. AIP Conference Proceedings, 1826. https://doi.org/10.1063/1.4979226
Irawan, Anton, Riadz, T., & Nurmalisa, N. (2015). PROSES TOREFAKSI TANDAN KOSONG KELAPA SAWIT UNTUK KANDUNGAN HEMISELULOSA DAN UJI KEMAMPUAN PENYERAPAN AIR. Reaktor. https://doi.org/10.14710/reaktor.15.3.190-194
Karampinis, E., Grammelis, P., Agraniotis, M., Violidakis, I., & Kakaras, E. (2014). Co-firing of biomass with coal in thermal power plants: Technology schemes, impacts, and future perspectives. Wiley Interdisciplinary Reviews: Energy and Environment, 3(4). https://doi.org/10.1002/wene.100
Kumar, L., Koukoulas, A. A., Mani, S., & Satyavolu, J. (2017). Integrating torrefaction in the wood pellet industry: A critical review. In Energy and Fuels (Vol. 31, Issue 1). https://doi.org/10.1021/acs.energyfuels.6b02803
Loha, C., Chattopadhyay, H., Chatterjee, P. K., & Majumdar, G. (2020). Co-Firing of Biomass to Reduce CO2 Emission. In Encyclopedia of Renewable and Sustainable Materials. https://doi.org/10.1016/b978-0-12-803581-8.11006-9
Mahidin;, Erdiwansyah;, Zaki, M., Hamdani;, Hisbullah, & Mamat;, R. (2019). An overview of the potential and utilization of biomass for heat energy in Indonesia. Researchgate.Net, 9(10).
McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1). https://doi.org/10.1016/S0960-8524(01)00118-3
Mobini, M., Meyer, J. C., Trippe, F., Sowlati, T., Fröhling, M., & Schultmann, F. (2014). Assessing the integration of torrefaction into wood pellet production. Journal of Cleaner Production, 78. https://doi.org/10.1016/j.jclepro.2014.04.071
Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. In Renewable and Sustainable Energy Reviews (Vol. 94). https://doi.org/10.1016/j.rser.2018.06.042
Murphy, F., & McDonnell, K. (2017). Investigation of the potential impact of the Paris Agreement on national mitigation policies and the risk of carbon leakage; an analysis of the Irish bioenergy industry. Energy Policy, 104. https://doi.org/10.1016/j.enpol.2017.01.042
Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M. K., & Chatterjee, P. K. (2016). Present status and overview of Chemical Looping Combustion technology. In Renewable and Sustainable Energy Reviews (Vol. 59). https://doi.org/10.1016/j.rser.2016.01.003
Niu, Y., Tan, H., & Hui, S. (2016). Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. In Progress in Energy and Combustion Science (Vol. 52). https://doi.org/10.1016/j.pecs.2015.09.003
Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M., & Rooney, D. W. (2020). Recent advances in carbon capture storage and utilisation technologies: a review. In Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01133-3
Park, S. W., & Jang, C. H. (2012). Effects of pyrolysis temperature on changes in fuel characteristics of biomass char. Energy, 39(1). https://doi.org/10.1016/j.energy.2012.01.031
Pimchuai, A., Dutta, A., & Basu, P. (2010). Torrefaction of agriculture residue to enhance combustible properties. Energy and Fuels, 24(9). https://doi.org/10.1021/ef901168f
Priyanto, D. E., Matsunaga, Y., Ueno, S., Kasai, H., Tanoue, T., Mae, K., & Fukushima, H. (2017). Co-firing high ratio of woody biomass with coal in a 150-MW class pulverized coal boiler: Properties of the initial deposits and their effect on tube corrosion. Fuel, 208. https://doi.org/10.1016/j.fuel.2017.07.053
Priyanto, D. E., Ueno, S., Sato, N., Kasai, H., Tanoue, T., & Fukushima, H. (2016). Ash transformation by co-firing of coal with high ratios of woody biomass and effect on slagging propensity. Fuel, 174. https://doi.org/10.1016/j.fuel.2016.01.072
Pudasainee, D., Kurian, V., & Gupta, R. (2020). Coal: Past, present, and future sustainable use. In Future Energy: Improved, Sustainable and Clean Options for Our Planet. https://doi.org/10.1016/B978-0-08-102886-5.00002-5
Ribeiro, J. M. C., Godina, R., Matias, J. C. de O., & Nunes, L. J. R. (2018). Future perspectives of biomass torrefaction: Review of the current state-of-the-art and research development. In Sustainability (Switzerland) (Vol. 10, Issue 7). https://doi.org/10.3390/su10072323
Roni, M. S., Chowdhury, S., Mamun, S., Marufuzzaman, M., Lein, W., & Johnson, S. (2017). Biomass co-firing technology with policies, challenges, and opportunities: A global review. In Renewable and Sustainable Energy Reviews (Vol. 78). https://doi.org/10.1016/j.rser.2017.05.023
Sami, M., Annamalai, K., & Wooldridge, M. (2001). Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science, 27(2). https://doi.org/10.1016/S0360-1285(00)00020-4
Sampson, G. R., Richmond, A. P., Brewster, G. A., & Gasbarro, A. F. (1991). Cofiring of Wood Chips with Coal in Interior Alaska. Forest Products Journal, 41(5).
Samuelsson, R., Burvall, J., & Jirjis, R. (2006). Comparison of different methods for the determination of moisture content in biomass. Biomass and Bioenergy, 30(11). https://doi.org/10.1016/j.biombioe.2006.06.004
Shukla, A. K., Ahmad, Z., Sharma, M., Dwivedi, G., Verma, T. N., Jain, S., Verma, P., & Zare, A. (2020). Advances of carbon capture and storage in coal-based power generating units in an indian context. In Energies (Vol. 13, Issue 6). https://doi.org/10.3390/en13164124
Singh, R., & Setiawan, A. D. (2013). Biomass energy policies and strategies: Harvesting potential in India and Indonesia. In Renewable and Sustainable Energy Reviews (Vol. 22). https://doi.org/10.1016/j.rser.2013.01.043
Speight, J. G. (2021). Clean Coal Technologies for Power Generation. In Coal‐Fired Power Generation Handbook 2nd Edition. https://doi.org/10.1002/9781119510116.ch13
Suárez-Ruiz, I., Diez, M. A., & Rubiera, F. (2018). New trends in coal conversion: Combustion, gasification, emissions, and coking. In New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking. https://doi.org/10.1016/C2016-0-04039-1
Tillman, D. A. (2000). Biomass cofiring: The technology, the experience, the combustion consequences. Biomass and Bioenergy, 19(6). https://doi.org/10.1016/S0961-9534(00)00049-0
Uemura, Y., Omar, W., Othman, N. A., Yusup, S., & Tsutsui, T. (2013). Torrefaction of oil palm EFB in the presence of oxygen. Fuel, 103. https://doi.org/10.1016/j.fuel.2011.11.018
Ungureanu, N., Vladut, V., Voicu, G., Dinca, M. N., & Zabava, B. S. (2018). Influence of biomass moisture content on pellet properties - Review. Engineering for Rural Development, 17. https://doi.org/10.22616/ERDev2018.17.N449
van Loo, S., & Koppejan, J. (2012). The handbook of biomass combustion and co-firing. In The Handbook of Biomass Combustion and Co-Firing. https://doi.org/10.4324/9781849773041
Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. In Fuel (Vol. 89, Issue 5). https://doi.org/10.1016/j.fuel.2009.10.022
Verma, M., Loha, C., Sinha, A. N., & Chatterjee, P. K. (2017). Drying of biomass for utilising in co-firing with coal and its impact on environment – A review. In Renewable and Sustainable Energy Reviews (Vol. 71). https://doi.org/10.1016/j.rser.2016.12.101
Wilberforce, T., Olabi, A. G., Sayed, E. T., Elsaid, K., & Abdelkareem, M. A. (2021). Progress in carbon capture technologies. Science of the Total Environment, 761. https://doi.org/10.1016/j.scitotenv.2020.143203
Xu, Y., Yang, K., Zhou, J., & Zhao, G. (2020). Coal-biomass co-firing power generation technology: Current status, challenges and policy implications. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/su12093692
Yang, B., Wei, Y. M., Hou, Y., Li, H., & Wang, P. (2019). Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage. Applied Energy, 252. https://doi.org/10.1016/j.apenergy.2019.113483
Yao, X., Zhou, H., Xu, K., Xu, Q., & Li, L. (2020). Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust. Renewable Energy, 145. https://doi.org/10.1016/j.renene.2019.06.087
Zhang, Y. (2019). Coal-fired power plants and pollutant emissions. In Advances in Ultra-low Emission Control Technologies for Coal-Fired Power Plants. https://doi.org/10.1016/B978-0-08-102418-8.00001-2
DOI: http://dx.doi.org/10.62870/wcej.v5i1.12139
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 World Chemical Engineering Journal
WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).
This Journal has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.