STUDY OF REACTION KINETICS ON BIODIESEL PRODUCTION USING IN SITU METHOD WITHOUT CATALYST

Rosada Yulianti Naulina, Handik Hendratama, Dennis Farina Nury, Siti Zullaikah

Abstract


Biodiesel from rice bran using an uncatalyzed in-situ transesterification method in subcritical ethanol - water has been investigated. This method is known to be economical because the experimental steps are reduced and environmentally friendly because we do not use a catalyst. In this experiment, CO2 was used as a compressed gas and ethyl acetate as a co-solvent to increase yield. This reactor is equipped with a stirrer that uses a magnetic stirrer. Rice bran, a mixture of water, ethanol and ethyl acetate in a mole ratio of 1:10:9:2 is fed into the reactor, then injecting CO2 gas to increase the pressure and to ensure the reaction takes place under subcritical conditions under operating pressure of 80 bar.Temperature (120 - 200ᵒC) and reaction time (1 - 4 hours) were investigated to increase biodiesel. The highest yield of FAEE composition at 200ᵒC for 3 hours was 91.264% with the results of calculating the kinetics of the transesterification reaction, the values of k1 and k2 were 0.349.10-3 and 0.0045 mL3.mmol-3.min-1. Meanwhile, in the esterification reaction, the values for k1 and k2 were 0.0194 and 0.0579 mL3.mmol-3.min-1.


Full Text:

PDF

References


Abedini Najafabadi, H., Vossoughi, M., & Pazuki, G. (2015). The role of co-solvents in improving the direct transesterification of wet microalgal biomass under supercritical condition. Bioresource Technology, 193, 90–96. https://doi.org/10.1016/j.biortech.2015.06.045

Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). The effects of water on biodiesel production and refining technologies: A review. Renewable and Sustainable Energy Reviews, 16(5), 3456–3470. https://doi.org/10.1016/j.rser.2012.03.004

Budrat, P., & Shotipruk, A. (2009). Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Separation and Purification Technology, 66(1), 125–129. https://doi.org/10.1016/j.seppur.2008.11.014

Chen, C., Cai, L., Zhang, L., Fu, W., Hong, Y., Gao, X., Jiang, Y., Li, L., Yan, X., & Wu, G. (2020). Transesterification of rice bran oil to biodiesel using mesoporous NaBeta zeolite-supported molybdenum catalyst: Experimental and kinetic studies. Chemical Engineering Journal, 382. https://doi.org/10.1016/j.cej.2019.122839

Choi, N., No, D. S., Kim, H., Kim, B. H., Kwak, J., Lee, J. S., & Kim, I. H. (2018). In situ lipase-catalyzed transesterification in rice bran for synthesis of fatty acid methyl ester. Industrial Crops and Products, 120, 140–146. https://doi.org/10.1016/J.INDCROP.2018.04.049

Chuepeng, S., Komintarachat, C., Klinkaew, N., Maithomklang, S., & Sukjit, E. (2022). Utilization of waste-derived biodiesel in a compression ignition engine. Energy Reports, 8, 64–72. https://doi.org/10.1016/j.egyr.2022.10.107

Gao, J., Wang, Y., Li, X., Wang, S., Ma, C., & Wang, X. (2022). Catalytic effect of diesel PM derived ash on PM oxidation activity. Chemosphere, 299, 134445. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134445

Go, A. W., Sutanto, S., Ong, L. K., Tran-Nguyen, P. L., Ismadji, S., & Ju, Y. H. (2016). Developments in in-situ (trans) esterification for biodiesel production: A critical review. In Renewable and Sustainable Energy Reviews (Vol. 60, pp. 284–305). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.01.070

Habaki, H., Hayashi, T., & Egashira, R. (2014). Transesterification rate of model vegetable oil in heterogeneous system with a stirred vessel. Journal of Environmental Chemical Engineering, 2(3), 1543–1550. https://doi.org/10.1016/j.jece.2014.07.011

He, H., Wang, T., & Zhu, S. (2007). Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel, 86(3), 442–447. https://doi.org/10.1016/j.fuel.2006.07.035

Hoang, A. T., Tabatabaei, M., Aghbashlo, M., Carlucci, A. P., Ölçer, A. I., Le, A. T., & Ghassemi, A. (2021). Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable and Sustainable Energy Reviews, 135, 110204. https://doi.org/10.1016/J.RSER.2020.110204

Im, H., Kim, B., & Lee, J. W. (2015). Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae. Bioresource Technology, 193, 386–392. https://doi.org/10.1016/j.biortech.2015.06.122

Indrawan, N., Thapa, S., Rahman, S. F., Park, J. H., Park, S. H., Wijaya, M. E., Gobikrishnan, S., Purwanto, W. W., & Park, D. H. (2017). Palm biodiesel prospect in the Indonesian power sector. Environmental Technology and Innovation, 7, 110–127. https://doi.org/10.1016/j.eti.2017.01.001

Katekaew, S., Suiuay, C., Senawong, K., Seithtanabutara, V., Intravised, K., & Laloon, K. (2021). Optimization of performance and exhaust emissions of single-cylinder diesel engines fueled by blending diesel-like fuel from Yang-hard resin with waste cooking oil biodiesel via response surface methodology. Fuel, 304. https://doi.org/10.1016/j.fuel.2021.121434

Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. In Progress in Energy and Combustion Science (Vol. 58, pp. 36–59). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2016.08.001

Lai, C. C., Zullaikah, S., Vali, S. R., & Ju, Y. H. (2005). Lipase-catalyzed production of biodiesel from rice bran oil. Journal of Chemical Technology and Biotechnology, 80(3), 331–337. https://doi.org/10.1002/jctb.1208

Lu, W., Wang, Z., & Yuan, Z. (2015). Characteristics of lipid extraction from Chlorella sp. cultivated in outdoor raceway ponds with mixture of ethyl acetate and ethanol for biodiesel production. Bioresource Technology, 191, 433–437. https://doi.org/10.1016/j.biortech.2015.02.069

Morrison, W. R., Mann, D. L., Soon, W., & Coventry, A. M. (1975). Selective Extraction and Quantitative Analysis of Non-Starch and Starch Lipids from Wheat Flour. In J. Sci. Fd Agric (Vol. 26).

Nguyen, D. D., Dharmaraja, J., Shobana, S., Sundaram, A., Chang, S. W., Kumar, G., Shin, H. S., Saratale, R. G., & Saratale, G. D. (2019). Transesterification and fuel characterization of rice bran oil: A biorefinery path. Fuel, 253, 975–987. https://doi.org/10.1016/j.fuel.2019.05.063

Olagunju, A. I., Adelakun, O. S., & Olawoyin, M. S. (2022). The effect of rice bran extract on the quality indices, physicochemical properties and oxidative stability of soybean oil blended with various oils. Measurement: Food, 6, 100032. https://doi.org/10.1016/j.meafoo.2022.100032

Park, J., Kim, B., Chang, Y. K., & Lee, J. W. (2017). Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant. Bioresource Technology, 230, 8–14. https://doi.org/10.1016/j.biortech.2017.01.027

Park, J. Y., Park, M. S., Lee, Y. C., & Yang, J. W. (2015). Advances in direct transesterification of algal oils from wet biomass. In Bioresource Technology (Vol. 184, pp. 267–275). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2014.10.089

Paudel, A., Jessop, M. J., Stubbins, S. H., Champagne, P., & Jessop, P. G. (2015). Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2. Bioresource Technology, 184, 286–290. https://doi.org/10.1016/j.biortech.2014.11.111

Pereira, C. O., Portilho, M. F., Henriques, C. A., & Zotin, F. M. Z. (2014). SnSO4 as catalyst for simultaneous transesterification and esterification of acid soybean oil. Journal of the Brazilian Chemical Society, 25(12), 2409–2416. https://doi.org/10.5935/0103-5053.20140267

Rukunudin, I. H., White, P. J., Bern, C. J., & Bailey, T. B. (1998). A modified method for determining free fatty acids from small soybean oil sample sizes. JAOCS, Journal of the American Oil Chemists’ Society, 75(5), 563–568. https://doi.org/10.1007/s11746-998-0066-z

Temur Ergan, B., Yılmazer, G., & Bayramoğlu, M. (2022). Fast, High Quality and Low-Cost Biodiesel Production using Dolomite Catalyst in an Enhanced Microwave System with Simultaneous Cooling. Cleaner Chemical Engineering, 3, 100051. https://doi.org/10.1016/j.clce.2022.100051

Van Gerpen, J. (2005). Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005

Zhang, Y., Li, Y., Zhang, X., & Tan, T. (2015). Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresource Technology, 196, 712–715. https://doi.org/10.1016/j.biortech.2015.07.052

Zullaikah, S., Putra, A. K., Fachrudin, F. H., Utomo, A. T., Naulina, R. Y., Utami, S., Herminanto, R. P., & Ju, Y. H. (2021). Experimental investigation and optimization of non-catalytic in-situ biodiesel production from rice bran using response surface methodology historical data design. International Journal of Renewable Energy Development, 10(4), 804–810. https://doi.org/10.14710/IJRED.2021.34138

Zullaikah, S., Rahkadima, Y. T., & Ju, Y. H. (2017). A non-catalytic in situ process to produce biodiesel from a rice milling by-product using a subcritical water-methanol mixture. Renewable Energy, 111, 764–770. https://doi.org/10.1016/j.renene.2017.04.040

Zullaikah, S., Utami, S., Herminanto, R. P., & Rachimoellah, M. (2019). Enhanced Biodiesel and Ethyl Levulinate Production from Rice Bran through Non Catalytic In Situ Transesterification under Subcritical Water Ethanol Mixture. Materials Science Forum, 964, 97–102. https://doi.org/10.4028/www.scientific.net/msf.964.97




DOI: http://dx.doi.org/10.36055/wcej.v7i1.18564

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 World Chemical Engineering Journal

WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).

This Journal has been indexed by:

  1. Google Scholar
  2. Garuda
  3. Dimensions
  4. Crossref
  5. Open Academic Journal Index
  6. Journal Impact Factor
  7. Cite Factor 
Archives: Resources | Dimensions CrossrefJIFACTOR, Journal Indexing  

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.