Potential of Microalgae as Biofuel Feedstock
Abstract
Microalgae are photosynthetic microorganism capable to produce biomass fraction such as lipids, proteins and carbohydrates. Microalgal biomass can be converted to biofuel such as bioethanol, biodiesel and biogas. Biofuel derived from microalgae considered as third generation of biofuel. Microalgal biomass can be converted to energy by biological or chemical methods. Carbohydrate-enriched microalgal biomass can be used for bioethanol raw material. Biomass with high carbohydrate content can be made by manipulating environment factors such as cultivation medium, nutrition limitation, light intensity, salt stress, and temperatures. Biofuel derived from microalgal can replace biofuel derived from terrestrial plants because microalgal biomass has a high caloric value, low viscosity, low density, and lack of lignin that make it easy for converting it into biofuel like bioethanol
Full Text:
PDFReferences
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K.,
Zachleder, V., & Vítová, M. (2011). Microalgae—novel highly
efficient starch producers. Biotechnology and bioengineering, 108(4), 766-776.
Brennan L, Owende P (2010) Biofuels from microalgae—a review of
technologies forproduction, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577
Cenny Putnarubun et al . 2012 . penelitian pendahuluan pembuatan
biodiesel dan bioethanol dari Chlorella sp Secara simultan . J. Sains
MIPA, April 2018, Vol. 18, No. 1, Hal.: 1 - 6
Chaudhary, L., Pradhan, P., Soni, N., Singh, P., Tiwari, A., 2014. Algae as a feedstock for bioethanol production : new entrance in biofuel word. International Journal of ChemTech Research CODEN Vol. 6. 2. 1381-1389
C.-Y. Chen, X.-Q. Zhao, H.-W.Yen, S.-H. Ho, C.-L. Cheng, D.-J. Lee, F.-W. Bai, J.-S. Chang, Microalgae-based carbohydrates for biofuel
production,Biochemical Engineering Journal (2013), http://dx.doi.org/10.1016/j.bej.2013.03.006
Cheng J, Xia A, Song W, Su H, Zhou J, Cen K (2012) Comparison
between heterofermentation and autofermentation in hydrogen
production from Arthrospira (Spirulina) platensis wet biomass. Int J
Hydrog Energ 37(8):6536–6544. doi:10.1016/j.ijhydene. 2012.01.025
Gouveia, Luisa. 2011. Microalgae as a Feedstock for biofuels. Springer Biofuels 1, 143-162.
Harun, R., Singh, M., Forde, G.M., Danquah, M.K., 2010. Bioprocess
engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energ. Rev. 14, 1037-1047.
Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford
Jambo, S.A., Abdulla, R., Azhar, S.H., Marbawi,H., Gansau, J.A.,
Ravindra,P., 2016. A review on third generation bioethanol feedstock.
Renewable and sustainable energy reviews. 65. 756-769
Krisna wardhani et al. 2013 . PRODUKSI ETANOL DARI TETES TEBU
OLEH Saccharomyces cerevisiae PEMBENTUK FLOK (NRRL – Y
.AGRITECH, Vol. 33, No. 2, MEI 2013
Lam, M.K., Lee, K.T., 2015. Bioethanol production from microalgae.
Chapter 12. 197-208
Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: an overview of the factors influencing carbohydrates
production, and of main bioconversion technologies for production of
biofuels. Applied microbiology and biotechnology, 96(3), 631-645.
Markou G., et. al. 2013. Bioethanol Production by Carbohydrate Enriched Biomass of Arthrospira (Spirulina) platensis. Energies, 6, 3937-3950; doi:10.3390/en6083937.
Markou G., Chatzipavlidis I., Georgakakis D. 2012. Carbohydrates
Production and Bio-flocculation Characteristics in Cultures of
Arthrospira (Spirulina) platensis: Improvements ThroughPhosphorus
Limitation Process. Bioenergy Research. DOI 10.1007/s12155-012-
-3.
Markou G., 2012. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology 116 (2012) 533–535.
Purnamasari et al. 2012 .Produksi Bioethanol dari selulosa alga merah dengan system fermentasi simultan menggunakan bakteri. Clostridium acetobutylicum.
Rachmaniah et al . 2010 . ALGAE SPIRULINA SP. OIL EXTRACTION
METHOD USING THE OSMOTIC AND PERCOLATION AND
THE EFFECT ON EXTRACTABLE COMPONENTS . jurnal Teknik
Kimia Vol. 4, No.2, April 2010
Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C., 2010.
Genetic engineering of algae for enhanced biofuel production.
Eukaryot. Cell 9, 486-501.
Song,D., Fu, J., Shi,D., 2008. Exploitation of oil-bearingmicroalgae for biodiesel. Chin. J. Biotechnol. 24. 341-348
Tredici, M.R., 2010. Photobiology of microalgae mass cultures:
understanding the tools for the next green revolution.
Warr SRC, Reed RH, Stewart WDP (1985) Carbohydrate accumulation in osmotically stressed cyanobacteria (blue-green algae): interactions of temperature and salinity. New Phytol 100(3):285–292. doi:10.1111/j.1469-8137.1985.tb02779.x
digilib.unil
DOI: http://dx.doi.org/10.62870/wcej.v1i4.1941
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 World Chemical Engineering Journal
WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).
This Journal has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.