ZEOLITE FOR AGRICULTURE INTENSIFICATION AND CATALYST IN AGROINDUSTRY
Abstract
Full Text:
PDFReferences
Abasaeed, A. E., Asif, M., & Fakeeha, A. H. (1999). Zeolite-catalyzed hydrolysis of inulin to fructose in a fluidized bed reactor. Bioprocess Engineering, 20(4), 343-348.
Abasaeed, A. E., & Lee, Y. Y. (1995). Inulin hydrolysis to fructose by a novel catalyst. Chemical Engineering & Technology, 18(6), 440-444.
Bakare, I. A., Muraza, O., Sanhoob, M. A., Miyake, K., Hirota, Y., Yamani, Z. H., & Nishiyama, N. (2018). Dimethyl ether-to-olefins over aluminum rich ZSM-5: The role of Ca and La as modifiers. Fuel, 211, 18-26.
BPS. (2013). Proyeksi Penduduk Indonesia 2010-2035.
BPS. (2015). Penduduk Indonesia: Hasil Survei Penduduk Antar Sensus, Badan Pusat Statistik,.
Casas, A., Ruiz, J. R., Ramos, M. J., & Pérez, Á. (2010). Effects of Triacetin on Biodiesel Quality. Energy & Fuels, 24(8), 4481-4489.
Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nature Education Knowledge,, 4(4), 10.
Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149.
Climent, M. J., Corma, A., & Iborra, S. (2010). Zeolites as Catalysts for the Synthesis of Fine Chemicals Zeolites and Catalysis (pp. 775-826): Wiley-VCH Verlag GmbH & Co. KGaA.
Colella, C. (2005). Natural zeolites. In J. Čejka & H. v. Bekkum (Eds.), Studies in Surface Science and Catalysis (Vol. Volume 157, pp. 13-40): Elsevier.
Colella, C., & Gualtieri, A. F. (2007). Cronstedt’s zeolite. Microporous and Mesoporous Materials, 105(3), 213-221.
Colella, C., & Wise, W. S. (2014). The IZA Handbook of Natural Zeolites: A tool of knowledge on the most important family of porous minerals. Microporous and Mesoporous Materials, 189, 4-10.
Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., . . . Vezzalini, G. (1997). Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names. Canadian Mineralogist, 35(6), 1571-1606.
Corma, A., Martínez, A., Fernandes, L. D., Monteiro, J. L. F., & Sousa-Aguiar, E. F. (1995). Short chain paraffins isomerization on Pt/beta catalysts. Influence of framework and extraframework zeolite composition. In H. K. Beyer, H. G. Karge, I. Kiricsi & J. B. Nagy (Eds.), Studies in Surface Science and Catalysis (Vol. 94, pp. 456-463): Elsevier.
de Campos Bernardi, A. C., Anchão Oliviera, P. P., de Melo Monte, M. B., & Souza-Barros, F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16-21.
De Smedt, C., Someus, E., & Spanoghe, P. (2015). Potential and actual uses of zeolites in crop protection. Pest Management Science, 71(10), 1355-1367.
Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 67(6), 1308-1313.
Díez, A. M., Sanromán, M. A., & Pazos, M. (2018). New approaches on the agrochemicals degradation by UV oxidation processes. Chemical Engineering Journal.
Djaeni, M., Bartels, P., Sanders, J., Straten, G. v., & Boxtel, A. J. B. v. (2007). Process Integration for Food Drying with Air Dehumidified by Zeolites. Drying Technology, 25(1), 225-239.
First, E. L., Gounaris, C. E., Wei, J., & Floudas, C. A. (2011). Computational characterization of zeolite porous networks: an automated approach. Physical Chemistry Chemical Physics, 13(38), 17339-17358.
Flanigen, E. M. (2001). Chapter 2 Zeolites and molecular sieves: An historical perspective. In H. van Bekkum, E. M. Flanigen, P. A. Jacobs & J. C. Jansen (Eds.), Studies in Surface Science and Catalysis (Vol. 137, pp. 11-35): Elsevier.
Fornefett, I., Rabet, D., Buttersack, C., & Buchholz, K. (2016). Adsorption of sucrose on zeolites. Green Chemistry, 18(11), 3378-3388.
Gelosa, D., Ramaioli, M., Valente, G., & Morbidelli, M. (2003). Chromatographic Reactors: Esterification of Glycerol with Acetic Acid Using Acidic Polymeric Resins. Industrial & Engineering Chemistry Research, 42(25), 6536-6544.
Ghasemi, Z., Sourinejad, I., Kazemian, H., & Rohani, S. (2016). Application of zeolites in aquaculture industry: a review. Reviews in Aquaculture, n/a-n/a.
Groen, J. C., Sano, T., Moulijn, J. A., & Pérez-Ramírez, J. (2007). Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J. Catal., 251(1), 21-27.
Hidalgo, J., Zbuzek, M., Černý, R., & Jíša, P. (2014). Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality Open Chemistry (Vol. 12, pp. 1).
http://europe.iza-structure.org/IZA-SC/ftc_table.php.
https://www.bps.go.id/linkTabelStatis/view/id/1799.
Iijima, A. (1980). Geology of natural zeolites and zeolitic rocks Pure and Applied Chemistry (Vol. 52, pp. 2115).
Jiang, Y., Ling, J., Xiao, P., He, Y., Zhao, Q., Chu, Z., . . . Webley, P. A. (2018). Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY. Chemical Engineering Journal, 334, 2593-2602.
Kavallieratos, N. G., Athanassiou, C. G., Boukouvala, M. C., & Rumbos, C. I. (2018). Acaricidal effect of three zeolite formulations on different life stages of Tyrophagus putrescentiae (Schrank) and Acarus siro L. (Sarcoptiformes: Acaridae). Journal of Stored Products Research, 78, 39-44.
Keim, N. L., Stanhope, K. L., & Havel, P. J. (2016). Fructose and High-Fructose Corn Syrup. In B. Caballero, P. M. Finglas & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 119-124). Oxford: Academic Press.
Keshavarzi, N., Mashayekhy Rad, F., Mace, A., Ansari, F., Akhtar, F., Nilsson, U., . . . Bergström, L. (2015). Nanocellulose–Zeolite Composite Films for Odor Elimination. ACS Applied Materials & Interfaces, 7(26), 14254-14262.
Khalil, U., & Muraza, O. (2016). Microwave-assisted hydrothermal synthesis of mordenite zeolite: Optimization of synthesis parameters. Microporous and Mesoporous Materials, 232, 211-217.
Konno, H., Okamura, T., Kawahara, T., Nakasaka, Y., Tago, T., & Masuda, T. (2012). Kinetics of n-hexane cracking over ZSM-5 zeolites – Effect of crystal size on effectiveness factor and catalyst lifetime. Chemical Engineering Journal, 207-208, 490-496.
Kubička, D., & Kikhtyanin, O. (2015). Opportunities for zeolites in biomass upgrading—Lessons from the refining and petrochemical industry. Catalysis Today, 243, 10-22.
Kurniawan, T., Jayanudin, J., Kustiningsih, I., & Firdaus, M. A. (2018). Palm Sap Sources, Characteristics, and Utilization in Indonesia. Journal of Food and Nutrition Research, 6(9), 590-596.
Kurniawan, T., Muraza, O., Bakare, I. A., Sanhoob, M. A., & Al-Amer, A. M. (2018). Isomerization of n-Butane over Cost-Effective Mordenite Catalysts Fabricated via Recrystallization of Natural Zeolites. Industrial & Engineering Chemistry Research, 57(6), 1894-1902.
Kurniawan, T., Muraza, O., Hakeem, A. S., & Al-Amer, A. M. (2017). Mechanochemical Route and Recrystallization Strategy To Fabricate Mordenite Nanoparticles from Natural Zeolites. Crystal Growth & Design, 17(6), 3313-3320.
Kurniawan, T., Muraza, O., Hakeem, A. S., Bakare, I. A., Nishitoba, T., Yokoi, T., . . . Al Amer, A. M. (2017). Selective Isomerization of n-Butane over Mordenite Nanoparticles Fabricated by a Sequential Ball Milling–Recrystallization–Dealumination Route. Energy & Fuels, 31(11), 12691-12700.
Kusdarto. (2008). Potensi zeolit di Indonesia. Jurnal Zeolit Indonesia, 7, 78-87.
Kusuma, R. I., Hadinoto, J. P., Ayucitra, A., Soetaredjo, F. E., & Ismadji, S. (2013). Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science, 74, 121-126.
Latifah, O., Ahmed, O. H., & Majid, N. M. A. (2017). Enhancing nitrogen availability from urea using clinoptilolite zeolite. Geoderma, 306, 152-159.
Lee, T., & Lin, Y.-S. (2012). USPTO.
Li, Z. (2018). The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. Science of The Total Environment, 639, 438-456.
Liu, L., Zhang, T., Wan, H., Chen, Y., Wang, X., Yang, G., & Ren, G. (2015). Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite. Energy Conversion and Management, 97, 132-139.
Ma, X., Zhou, D., Chu, X., Li, D., Wang, J., Song, W., & Xia, Q. (2017). Highly selective isomerization of biomass β-pinene over hierarchically acidic MCM-22 catalyst. Microporous and Mesoporous Materials, 237, 180-188.
Mahdi, H. I., Irawan, E., Nuryoto, N., Jayanudin, J., Sulistyo, H., Sediawan, W. B., & Muraza, O. (2016). Glycerol Carbonate Production from Biodiesel Waste Over Modified Natural Clinoptilolite. Waste and Biomass Valorization, 7(6), 1349-1356.
Mäki-Arvela, P., Kumar, N., Nieminen, V., Sjöholm, R., Salmi, T., & Murzin, D. Y. (2004). Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis, 225(1), 155-169.
Marantos, I., Christidis, G. E., & Ulmanu, M. (2012). Zeolite Formation and Deposits. In V. J. Inglezakis & A. A. Zorpas (Eds.), Handbook of Natural Zeolites.
Mertens, P., Verpoort, F., Parvulescu, A.-N., & De Vos, D. (2006). Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. Journal of Catalysis, 243(1), 7-13.
Montalvo, S., Díaz, F., Guerrero, L., Sánchez, E., & Borja, R. (2005). Effect of particle size and doses of zeolite addition on anaerobic digestion processes of synthetic and piggery wastes. Process Biochemistry, 40(3), 1475-1481.
Moreau, C., Durand, R., Aliès, F., Cotillon, M., Frutz, T., & Théoleyre, M.-A. (2000). Hydrolysis of sucrose in the presence of H-form zeolites. Industrial Crops and Products, 11(2), 237-242.
Mumpton, F. A. (1985). Using zeolites in agriculture. Paper presented at the Innovative Biological Technologies for Lesser Developed Countries, Washington, DC: US Congress, Office of Technology Assessment, OTA-13P-F-29.
Mumpton, F. A. (1999). La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences, 96(7), 3463-3470.
Nasser, G. A., Kurniawan, T., Tago, T., Bakare, I. A., Taniguchi, T., Nakasaka, Y., . . . Muraza, O. (2016). Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers, 61, 20-25.
Noori, M., Zendehdel, M., & Ahmadi, A. (2006). Using natural zeolite for the improvement of soil salinity and crop yield. Toxicological & Environmental Chemistry, 88(1), 77-84.
Nuryoto, N., Sulistyo, H., Budi Sediawan, W., & Perdana, I. (2017). Peningkatan Unjuk Kerja Katalisator Zeolit Alam Bayah pada Reaksi Ketalisasi Gliserol. 2017, 8.
Oh, S. C., Nguyendo, T., He, Y., Filie, A., Wu, Y., Tran, D. T., . . . Liu, D. (2017). External surface and pore mouth catalysis in hydrolysis of inulin over zeolites with different micropore topologies and mesoporosities. Catalysis Science & Technology, 7(5), 1153-1166.
Oladosu, Y., Rafii, M. Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A., & Miah, G. (2016). Fermentation Quality and Additives: A Case of Rice Straw Silage. BioMed Research International, 2016, 14.
Ozorio, L. P., Pianzolli, R., Mota, M. B. S., & Mota, C. J. A. (2012). Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. Journal of the Brazilian Chemical Society, 23, 931-937.
Papadakis, E. N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Makris, K. C., & Papadopoulou-Mourkidou, E. (2015). A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicology and Environmental Safety, 116, 1-9.
Parajuli, R., Dalgaard, T., & Birkved, M. (2018). Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of The Total Environment, 619-620, 127-143.
Petracchini, F., Paolini, V., Liotta, F., Paciucci, L., & Facci, E. (2017). Vacuum swing adsorption on natural zeolites from tuffs in a prototype plant. Environmental Progress & Sustainable Energy, 36(3), 887-894.
Pito, D. S., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2012). Hydrolysis of sucrose over composite catalysts. Chemical Engineering Journal, 184, 347-351.
Plößer, J., Lucas, M., & Claus, P. (2014). Highly selective menthol synthesis by one-pot transformation of citronellal using Ru/H-BEA catalysts. Journal of Catalysis, 320, 189-197.
Primo, A., & Garcia, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews, 43(22), 7548-7561.
Ramesh, K., & Reddy, D. D. (2011). Chapter Four - Zeolites and Their Potential Uses in Agriculture. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 113, pp. 219-241): Academic Press.
Rao, P. V., & Rao, B. V. A. (2011). Investigation On Emission Characteristics Of A Di Diesel Engine With Come-triacetin Additive Blend Fuel. International Journal of Advanced Engineering Research and Studies, 1(1), 217-221.
Rumbos, C. I., Sakka, M., Berillis, P., & Athanassiou, C. G. (2016). Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. Journal of Stored Products Research, 68, 93-101.
Saputra, O. A., Prameswari, M. D., Kinanti, V. T. D., Mayasari, O. D., Sutarni, Y. D., Apriany, K., & Lestari, W. W. (2017). Preparation, Characterization and Methylene Blue Dye Adsorption Ability of Acid Activated-Natural Zeolite. IOP Conference Series: Materials Science and Engineering, 172(1), 012039.
Seifzadeh Haghighi, S., Rahimpour, M. R., Raeissi, S., & Dehghani, O. (2013). Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide. Chemical Engineering Journal, 228, 1158-1167.
Smedt, C. D. (2016). Zeolites as potential plant protection agents: Ghent University.
Souza, I. M. S., Gurgel, G. C. S., Medeiros, A. M., Zonta, E., Ruiz, J. A. C., Paskocimas, C. A., . . . Bomio, M. R. D. (2018). The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 6(4), 4171-4177.
Subramanyam, B., & Roesli, R. (2000). Inert Dusts. In B. Subramanyam & D. W. Hagstrum (Eds.), Alternatives to Pesticides in Stored-Product IPM (pp. 321-380). Boston, MA: Springer US.
Sukardi. (2011). Formulasi Definisi Agroindustri dengan Pendekatan Backward Tracking. Pangan, 20, 269-282.
Takagaki, A., Iwatani, K., Nishimura, S., & Ebitani, K. (2010). Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chemistry, 12(4), 578-581.
Tatlier, M., Munz, G., & Henninger, S. K. (2018). Relation of water adsorption capacities of zeolites with their structural properties. Microporous and Mesoporous Materials, 264, 70-75.
Uphoff, N., & Dazzo, F. (2016). Making Rice Production More Environmentally-Friendly. Environments, 3(2), 12.
Verboekend, D., Keller, T. C., Milina, M., Hauert, R., & Pérez-Ramírez, J. (2013). Hierarchy Brings Function: Mesoporous Clinoptilolite and L Zeolite Catalysts Synthesized by Tandem Acid–Base Treatments. Chemistry of Materials, 25(9), 1947-1959.
Vermeiren, W., & Gilson, J. P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161.
Wang, L., Ma, Y., Wang, Y., Liu, S., & Deng, Y. (2011). Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catalysis Communications, 12(15), 1458-1462.
Wang, Y., Zhu, Y., Zhang, S., & Wang, Y. (2018). What could promote farmers to replace chemical fertilizers with organic fertilizers? Journal of Cleaner Production, 199, 882-890.
Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J., Sommer, S. G., & Chen, D. (2018). Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 6(1), 1233-1241.
Yongzhong, Z., Yuntong, N., Jaenicke, S., & Chuah, G.-K. (2005). Cyclisation of citronellal over zirconium zeolite beta— a highly diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis, 229(2), 404-413.
Zhou, L., & Boyd, C. E. (2014). Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture, 432, 252-257.
DOI: http://dx.doi.org/10.62870/wcej.v3i1.5507
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 World Chemical Engineering Journal
WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).
This Journal has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.