ZEOLITE FOR AGRICULTURE INTENSIFICATION AND CATALYST IN AGROINDUSTRY

Teguh Kurniawan, Nuryoto Nuryoto, Mochamad Adha Firdaus

Abstract


The role of renewable products is becoming important because the fossil resources in which most of our chemicals derived is vanishing. Agriculture as the renewable sources is needed to increase the production which is not only required to meet the food demands but also to replace chemicals that derived from fossil sources. Zeolite has a huge potential for agriculture intensification and conversion of agriculture products and by-products into chemicals. Indonesia has two kind deposit of natural zeolites, which are clinoptilolite and mordenite lies aligned volcanic mountain across Sumatra, Java, Nusa Tenggara and Sulawesi Islands. Zeolite has large surface area consisted of microporous and mesoporous structures. It could be utilized as an ion exchange agent, adsorbent and catalyst for applications in agriculture and agroindustry. Sustainable development of agricultural products could be also assisted by zeolite as slow-release fertilizer and controlling pests. Moreover, this review discusses about the integration of natural zeolite with chemical based wastes from livestock with nitrogen demand for cultivation is explained as a part of the idea of one-system-integrated farm and livestock. Storage and processing of agricultural products could be more efficient with the utilization of zeolite in drying, storage, processing and product preservation unit operations. Sucrose crystallization, catalytic reaction inulin to fructose, pinene isomerization and glycerol biodiesel by-product conversion is discussed in this review. As in general, zeolite porosity, topology, silicon to aluminium ratio, and acidity properties become an important factor on catalytic reactions to convert agricultural products into beneficial chemical substances

Full Text:

PDF

References


Abasaeed, A. E., Asif, M., & Fakeeha, A. H. (1999). Zeolite-catalyzed hydrolysis of inulin to fructose in a fluidized bed reactor. Bioprocess Engineering, 20(4), 343-348.

Abasaeed, A. E., & Lee, Y. Y. (1995). Inulin hydrolysis to fructose by a novel catalyst. Chemical Engineering & Technology, 18(6), 440-444.

Bakare, I. A., Muraza, O., Sanhoob, M. A., Miyake, K., Hirota, Y., Yamani, Z. H., & Nishiyama, N. (2018). Dimethyl ether-to-olefins over aluminum rich ZSM-5: The role of Ca and La as modifiers. Fuel, 211, 18-26.

BPS. (2013). Proyeksi Penduduk Indonesia 2010-2035.

BPS. (2015). Penduduk Indonesia: Hasil Survei Penduduk Antar Sensus, Badan Pusat Statistik,.

Casas, A., Ruiz, J. R., Ramos, M. J., & Pérez, Á. (2010). Effects of Triacetin on Biodiesel Quality. Energy & Fuels, 24(8), 4481-4489.

Chislock, M. F., Doster, E., Zitomer, R. A., & Wilson, A. E. (2013). Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nature Education Knowledge,, 4(4), 10.

Climent, M. J., Corma, A., De Frutos, P., Iborra, S., Noy, M., Velty, A., & Concepción, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrotalcite catalysts. The role of acid–base pairs. Journal of Catalysis, 269(1), 140-149.

Climent, M. J., Corma, A., & Iborra, S. (2010). Zeolites as Catalysts for the Synthesis of Fine Chemicals Zeolites and Catalysis (pp. 775-826): Wiley-VCH Verlag GmbH & Co. KGaA.

Colella, C. (2005). Natural zeolites. In J. Čejka & H. v. Bekkum (Eds.), Studies in Surface Science and Catalysis (Vol. Volume 157, pp. 13-40): Elsevier.

Colella, C., & Gualtieri, A. F. (2007). Cronstedt’s zeolite. Microporous and Mesoporous Materials, 105(3), 213-221.

Colella, C., & Wise, W. S. (2014). The IZA Handbook of Natural Zeolites: A tool of knowledge on the most important family of porous minerals. Microporous and Mesoporous Materials, 189, 4-10.

Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., . . . Vezzalini, G. (1997). Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names. Canadian Mineralogist, 35(6), 1571-1606.

Corma, A., Martínez, A., Fernandes, L. D., Monteiro, J. L. F., & Sousa-Aguiar, E. F. (1995). Short chain paraffins isomerization on Pt/beta catalysts. Influence of framework and extraframework zeolite composition. In H. K. Beyer, H. G. Karge, I. Kiricsi & J. B. Nagy (Eds.), Studies in Surface Science and Catalysis (Vol. 94, pp. 456-463): Elsevier.

de Campos Bernardi, A. C., Anchão Oliviera, P. P., de Melo Monte, M. B., & Souza-Barros, F. (2013). Brazilian sedimentary zeolite use in agriculture. Microporous and Mesoporous Materials, 167, 16-21.

De Smedt, C., Someus, E., & Spanoghe, P. (2015). Potential and actual uses of zeolites in crop protection. Pest Management Science, 71(10), 1355-1367.

Dibenedetto, A., Angelini, A., Aresta, M., Ethiraj, J., Fragale, C., & Nocito, F. (2011). Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron, 67(6), 1308-1313.

Díez, A. M., Sanromán, M. A., & Pazos, M. (2018). New approaches on the agrochemicals degradation by UV oxidation processes. Chemical Engineering Journal.

Djaeni, M., Bartels, P., Sanders, J., Straten, G. v., & Boxtel, A. J. B. v. (2007). Process Integration for Food Drying with Air Dehumidified by Zeolites. Drying Technology, 25(1), 225-239.

First, E. L., Gounaris, C. E., Wei, J., & Floudas, C. A. (2011). Computational characterization of zeolite porous networks: an automated approach. Physical Chemistry Chemical Physics, 13(38), 17339-17358.

Flanigen, E. M. (2001). Chapter 2 Zeolites and molecular sieves: An historical perspective. In H. van Bekkum, E. M. Flanigen, P. A. Jacobs & J. C. Jansen (Eds.), Studies in Surface Science and Catalysis (Vol. 137, pp. 11-35): Elsevier.

Fornefett, I., Rabet, D., Buttersack, C., & Buchholz, K. (2016). Adsorption of sucrose on zeolites. Green Chemistry, 18(11), 3378-3388.

Gelosa, D., Ramaioli, M., Valente, G., & Morbidelli, M. (2003). Chromatographic Reactors: Esterification of Glycerol with Acetic Acid Using Acidic Polymeric Resins. Industrial & Engineering Chemistry Research, 42(25), 6536-6544.

Ghasemi, Z., Sourinejad, I., Kazemian, H., & Rohani, S. (2016). Application of zeolites in aquaculture industry: a review. Reviews in Aquaculture, n/a-n/a.

Groen, J. C., Sano, T., Moulijn, J. A., & Pérez-Ramírez, J. (2007). Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J. Catal., 251(1), 21-27.

Hidalgo, J., Zbuzek, M., Černý, R., & Jíša, P. (2014). Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality Open Chemistry (Vol. 12, pp. 1).

http://europe.iza-structure.org/IZA-SC/ftc_table.php.

https://www.bps.go.id/linkTabelStatis/view/id/1799.

Iijima, A. (1980). Geology of natural zeolites and zeolitic rocks Pure and Applied Chemistry (Vol. 52, pp. 2115).

Jiang, Y., Ling, J., Xiao, P., He, Y., Zhao, Q., Chu, Z., . . . Webley, P. A. (2018). Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY. Chemical Engineering Journal, 334, 2593-2602.

Kavallieratos, N. G., Athanassiou, C. G., Boukouvala, M. C., & Rumbos, C. I. (2018). Acaricidal effect of three zeolite formulations on different life stages of Tyrophagus putrescentiae (Schrank) and Acarus siro L. (Sarcoptiformes: Acaridae). Journal of Stored Products Research, 78, 39-44.

Keim, N. L., Stanhope, K. L., & Havel, P. J. (2016). Fructose and High-Fructose Corn Syrup. In B. Caballero, P. M. Finglas & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 119-124). Oxford: Academic Press.

Keshavarzi, N., Mashayekhy Rad, F., Mace, A., Ansari, F., Akhtar, F., Nilsson, U., . . . Bergström, L. (2015). Nanocellulose–Zeolite Composite Films for Odor Elimination. ACS Applied Materials & Interfaces, 7(26), 14254-14262.

Khalil, U., & Muraza, O. (2016). Microwave-assisted hydrothermal synthesis of mordenite zeolite: Optimization of synthesis parameters. Microporous and Mesoporous Materials, 232, 211-217.

Konno, H., Okamura, T., Kawahara, T., Nakasaka, Y., Tago, T., & Masuda, T. (2012). Kinetics of n-hexane cracking over ZSM-5 zeolites – Effect of crystal size on effectiveness factor and catalyst lifetime. Chemical Engineering Journal, 207-208, 490-496.

Kubička, D., & Kikhtyanin, O. (2015). Opportunities for zeolites in biomass upgrading—Lessons from the refining and petrochemical industry. Catalysis Today, 243, 10-22.

Kurniawan, T., Jayanudin, J., Kustiningsih, I., & Firdaus, M. A. (2018). Palm Sap Sources, Characteristics, and Utilization in Indonesia. Journal of Food and Nutrition Research, 6(9), 590-596.

Kurniawan, T., Muraza, O., Bakare, I. A., Sanhoob, M. A., & Al-Amer, A. M. (2018). Isomerization of n-Butane over Cost-Effective Mordenite Catalysts Fabricated via Recrystallization of Natural Zeolites. Industrial & Engineering Chemistry Research, 57(6), 1894-1902.

Kurniawan, T., Muraza, O., Hakeem, A. S., & Al-Amer, A. M. (2017). Mechanochemical Route and Recrystallization Strategy To Fabricate Mordenite Nanoparticles from Natural Zeolites. Crystal Growth & Design, 17(6), 3313-3320.

Kurniawan, T., Muraza, O., Hakeem, A. S., Bakare, I. A., Nishitoba, T., Yokoi, T., . . . Al Amer, A. M. (2017). Selective Isomerization of n-Butane over Mordenite Nanoparticles Fabricated by a Sequential Ball Milling–Recrystallization–Dealumination Route. Energy & Fuels, 31(11), 12691-12700.

Kusdarto. (2008). Potensi zeolit di Indonesia. Jurnal Zeolit Indonesia, 7, 78-87.

Kusuma, R. I., Hadinoto, J. P., Ayucitra, A., Soetaredjo, F. E., & Ismadji, S. (2013). Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Applied Clay Science, 74, 121-126.

Latifah, O., Ahmed, O. H., & Majid, N. M. A. (2017). Enhancing nitrogen availability from urea using clinoptilolite zeolite. Geoderma, 306, 152-159.

Lee, T., & Lin, Y.-S. (2012). USPTO.

Li, Z. (2018). The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. Science of The Total Environment, 639, 438-456.

Liu, L., Zhang, T., Wan, H., Chen, Y., Wang, X., Yang, G., & Ren, G. (2015). Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite. Energy Conversion and Management, 97, 132-139.

Ma, X., Zhou, D., Chu, X., Li, D., Wang, J., Song, W., & Xia, Q. (2017). Highly selective isomerization of biomass β-pinene over hierarchically acidic MCM-22 catalyst. Microporous and Mesoporous Materials, 237, 180-188.

Mahdi, H. I., Irawan, E., Nuryoto, N., Jayanudin, J., Sulistyo, H., Sediawan, W. B., & Muraza, O. (2016). Glycerol Carbonate Production from Biodiesel Waste Over Modified Natural Clinoptilolite. Waste and Biomass Valorization, 7(6), 1349-1356.

Mäki-Arvela, P., Kumar, N., Nieminen, V., Sjöholm, R., Salmi, T., & Murzin, D. Y. (2004). Cyclization of citronellal over zeolites and mesoporous materials for production of isopulegol. Journal of Catalysis, 225(1), 155-169.

Marantos, I., Christidis, G. E., & Ulmanu, M. (2012). Zeolite Formation and Deposits. In V. J. Inglezakis & A. A. Zorpas (Eds.), Handbook of Natural Zeolites.

Mertens, P., Verpoort, F., Parvulescu, A.-N., & De Vos, D. (2006). Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. Journal of Catalysis, 243(1), 7-13.

Montalvo, S., Díaz, F., Guerrero, L., Sánchez, E., & Borja, R. (2005). Effect of particle size and doses of zeolite addition on anaerobic digestion processes of synthetic and piggery wastes. Process Biochemistry, 40(3), 1475-1481.

Moreau, C., Durand, R., Aliès, F., Cotillon, M., Frutz, T., & Théoleyre, M.-A. (2000). Hydrolysis of sucrose in the presence of H-form zeolites. Industrial Crops and Products, 11(2), 237-242.

Mumpton, F. A. (1985). Using zeolites in agriculture. Paper presented at the Innovative Biological Technologies for Lesser Developed Countries, Washington, DC: US Congress, Office of Technology Assessment, OTA-13P-F-29.

Mumpton, F. A. (1999). La roca magica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences, 96(7), 3463-3470.

Nasser, G. A., Kurniawan, T., Tago, T., Bakare, I. A., Taniguchi, T., Nakasaka, Y., . . . Muraza, O. (2016). Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers, 61, 20-25.

Noori, M., Zendehdel, M., & Ahmadi, A. (2006). Using natural zeolite for the improvement of soil salinity and crop yield. Toxicological & Environmental Chemistry, 88(1), 77-84.

Nuryoto, N., Sulistyo, H., Budi Sediawan, W., & Perdana, I. (2017). Peningkatan Unjuk Kerja Katalisator Zeolit Alam Bayah pada Reaksi Ketalisasi Gliserol. 2017, 8.

Oh, S. C., Nguyendo, T., He, Y., Filie, A., Wu, Y., Tran, D. T., . . . Liu, D. (2017). External surface and pore mouth catalysis in hydrolysis of inulin over zeolites with different micropore topologies and mesoporosities. Catalysis Science & Technology, 7(5), 1153-1166.

Oladosu, Y., Rafii, M. Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A., & Miah, G. (2016). Fermentation Quality and Additives: A Case of Rice Straw Silage. BioMed Research International, 2016, 14.

Ozorio, L. P., Pianzolli, R., Mota, M. B. S., & Mota, C. J. A. (2012). Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. Journal of the Brazilian Chemical Society, 23, 931-937.

Papadakis, E. N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Makris, K. C., & Papadopoulou-Mourkidou, E. (2015). A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicology and Environmental Safety, 116, 1-9.

Parajuli, R., Dalgaard, T., & Birkved, M. (2018). Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Science of The Total Environment, 619-620, 127-143.

Petracchini, F., Paolini, V., Liotta, F., Paciucci, L., & Facci, E. (2017). Vacuum swing adsorption on natural zeolites from tuffs in a prototype plant. Environmental Progress & Sustainable Energy, 36(3), 887-894.

Pito, D. S., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2012). Hydrolysis of sucrose over composite catalysts. Chemical Engineering Journal, 184, 347-351.

Plößer, J., Lucas, M., & Claus, P. (2014). Highly selective menthol synthesis by one-pot transformation of citronellal using Ru/H-BEA catalysts. Journal of Catalysis, 320, 189-197.

Primo, A., & Garcia, H. (2014). Zeolites as catalysts in oil refining. Chemical Society Reviews, 43(22), 7548-7561.

Ramesh, K., & Reddy, D. D. (2011). Chapter Four - Zeolites and Their Potential Uses in Agriculture. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 113, pp. 219-241): Academic Press.

Rao, P. V., & Rao, B. V. A. (2011). Investigation On Emission Characteristics Of A Di Diesel Engine With Come-triacetin Additive Blend Fuel. International Journal of Advanced Engineering Research and Studies, 1(1), 217-221.

Rumbos, C. I., Sakka, M., Berillis, P., & Athanassiou, C. G. (2016). Insecticidal potential of zeolite formulations against three stored-grain insects, particle size effect, adherence to kernels and influence on test weight of grains. Journal of Stored Products Research, 68, 93-101.

Saputra, O. A., Prameswari, M. D., Kinanti, V. T. D., Mayasari, O. D., Sutarni, Y. D., Apriany, K., & Lestari, W. W. (2017). Preparation, Characterization and Methylene Blue Dye Adsorption Ability of Acid Activated-Natural Zeolite. IOP Conference Series: Materials Science and Engineering, 172(1), 012039.

Seifzadeh Haghighi, S., Rahimpour, M. R., Raeissi, S., & Dehghani, O. (2013). Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide. Chemical Engineering Journal, 228, 1158-1167.

Smedt, C. D. (2016). Zeolites as potential plant protection agents: Ghent University.

Souza, I. M. S., Gurgel, G. C. S., Medeiros, A. M., Zonta, E., Ruiz, J. A. C., Paskocimas, C. A., . . . Bomio, M. R. D. (2018). The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 6(4), 4171-4177.

Subramanyam, B., & Roesli, R. (2000). Inert Dusts. In B. Subramanyam & D. W. Hagstrum (Eds.), Alternatives to Pesticides in Stored-Product IPM (pp. 321-380). Boston, MA: Springer US.

Sukardi. (2011). Formulasi Definisi Agroindustri dengan Pendekatan Backward Tracking. Pangan, 20, 269-282.

Takagaki, A., Iwatani, K., Nishimura, S., & Ebitani, K. (2010). Synthesis of glycerol carbonate from glycerol and dialkyl carbonates using hydrotalcite as a reusable heterogeneous base catalyst. Green Chemistry, 12(4), 578-581.

Tatlier, M., Munz, G., & Henninger, S. K. (2018). Relation of water adsorption capacities of zeolites with their structural properties. Microporous and Mesoporous Materials, 264, 70-75.

Uphoff, N., & Dazzo, F. (2016). Making Rice Production More Environmentally-Friendly. Environments, 3(2), 12.

Verboekend, D., Keller, T. C., Milina, M., Hauert, R., & Pérez-Ramírez, J. (2013). Hierarchy Brings Function: Mesoporous Clinoptilolite and L Zeolite Catalysts Synthesized by Tandem Acid–Base Treatments. Chemistry of Materials, 25(9), 1947-1959.

Vermeiren, W., & Gilson, J. P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161.

Wang, L., Ma, Y., Wang, Y., Liu, S., & Deng, Y. (2011). Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst. Catalysis Communications, 12(15), 1458-1462.

Wang, Y., Zhu, Y., Zhang, S., & Wang, Y. (2018). What could promote farmers to replace chemical fertilizers with organic fertilizers? Journal of Cleaner Production, 199, 882-890.

Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J., Sommer, S. G., & Chen, D. (2018). Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 6(1), 1233-1241.

Yongzhong, Z., Yuntong, N., Jaenicke, S., & Chuah, G.-K. (2005). Cyclisation of citronellal over zirconium zeolite beta— a highly diastereoselective catalyst to (±)-isopulegol. Journal of Catalysis, 229(2), 404-413.

Zhou, L., & Boyd, C. E. (2014). Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture, 432, 252-257.




DOI: http://dx.doi.org/10.62870/wcej.v3i1.5507

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 World Chemical Engineering Journal

WCEJ (e-ISSN: 2443-2261) is published by Chemical Engineering Department, Universitas Sultan Ageng Tirtayasa (UNTIRTA).

This Journal has been indexed by:

  1. Google Scholar
  2. Garuda
  3. Dimensions
  4. Crossref
  5. Open Academic Journal Index
  6. Journal Impact Factor
  7. Cite Factor 
Archives: Resources | Dimensions CrossrefJIFACTOR, Journal Indexing  

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.