Physicochemical Properties of Tomato Paste Fortified Functional Cheddar Cheese

Putri Ramadhany, Anastasia Prima Kristijarti, Graciella Lorenz Susanto, Geraldo Prajna

Abstract


The aim of this research is to fortify cheddar cheese’s nutritional value by adding tomato paste. This study transformed ultra-heat treatment (UHT) milk into cheese through cheddaring. Tomato paste was added at 5 g/L, 10 g/L, and 15 g/L during the first curd formation, together with calcium chloride (CaCl2). The type of rennet (animal and microbial) was varied at 0.25 ml/L of milk. Ripening was done in one month at 4°C. According to this study, animal rennet formed curd better than microbial rennet. The addition of tomato paste slightly decreases the curd formation, with approximately 0.37 % reduction per 5 gram of tomato paste. Increasing tomato paste to 15 g/L would increase lycopene to 0.993 – 0.996 mg/100 g. The cheese produced was categorized as extra-hard and low-fat based on the percentage of Moisture Non-Fat Basis (MNFS) and Fat on Dry Matter (FDM). The addition of tomato paste reduced the pH value, resulting in increased firmness and hardness and decreased chewiness and springiness.


Keywords


cheddar, functional cheese, animal rennet, microbial rennet, tomato paste

Full Text:

PDF

References


Abd El-Aziz, M., Refaey, M., 2017. Effect of Adding Tomato Juice (Solanum lycopersicum) on the Quality of Functional Mozzarella Cheese. Journal of Food and Dairy Sciences 8, 369–371. https://doi.org/10.21608/jfds.2017.38904

Amelia, I., Drake, M., Nelson, B., Barbano, D.M., 2013. A new method for the production of low-fat Cheddar cheese. J Dairy Sci 96, 4870–4884. https://doi.org/10.3168/jds.2012-6542

Arlene, A., Prima Kristijarti, A., Ardelia, I., 2015. The Effects of the Types of Milk (Cow, Goat, Soya) and Enzymes (Rennet, Papain, Bromelain) Toward Cheddar Cheese Production. Makara Journal of Technology 19, 31. https://doi.org/10.7454/mst.v19i1.3028

Aykas, D.P., Rodrigues Borba, K., Rodriguez-Saona, L.E., 2020. Non-Destructive Quality Assessment of Tomato Paste by Using Portable Mid-Infrared Spectroscopy and Multivariate Analysis. Foods 9, 1300. https://doi.org/10.3390/foods9091300

Brigiano, F.S., Gierada, M., Tielens, F., Pietrucci, F., 2022. Mechanism and Free-Energy Landscape of Peptide Bond Formation at the Silica–Water Interface. ACS Catal 12, 2821–2830. https://doi.org/10.1021/acscatal.1c05635

Bulut-Solak, B., Akin, N., 2019. Impact of Cooking pH Values on the Textural and Chemical Properties for Processed Cheeses with/without the Use of Traditional Village Cheese during Storage. Food Sci Anim Resour 39, 541–554. https://doi.org/10.5851/kosfa.2019.e34

Butnariu, M., Sarac, I., 2019. Functional Food. Int J Nutr 3, 7–16. https://doi.org/10.14302/issn.2379-7835.ijn-19-2615

Dairy Industries International, 2020. Global cheese markets hit record highs [WWW Document]. Dairy Industries International. URL https://www.dairyindustries.com/news/35273/global-cheese-markets-hit-record-highs/ (accessed 4.10.22).

Devseren, E., Okut, D., Koc, M., Karatas, H., Kaymak-Ertekin, F., 2021. Comparison of Quality Characteristics of Tomato Paste Produced under Atmospheric Conditions and Vacuum Evaporations. An Acad Bras Cienc 93. https://doi.org/10.1590/0001-3765202120200215

FAO, WHO, 2013. Codex Alimentarius: Standard for processed tomato concentrates (CXS 57-1981).

Farahat, E.S.A., Mohamed, A.G., El-Loly, M.M., Gafour, W.A.M.S., 2021. Innovative vegetables-processed cheese: I. Physicochemical, rheological and sensory characteristics. Food Biosci 42, 101128. https://doi.org/10.1016/j.fbio.2021.101128

Fox, P.F., McSweeney, P.L.H., 2017. Cheese: An Overview, in: Cheese. Elsevier, pp. 5–21. https://doi.org/10.1016/B978-0-12-417012-4.00001-6

Goosen, C., 2014. Consumer acceptance of Cheddar cheese: Intrinsic, extrinsic and socio-demographic influences. Stellenbosch University.

Górecka, D., Wawrzyniak, A., Jędrusek-Golińska, A., Dziedzic, K., Hamułka, J., Kowalczewski, P.Ł., Walkowiak, J., 2020. Lycopene in tomatoes and tomato products. Open Chem 18, 752–756. https://doi.org/10.1515/chem-2020-0050

Hassan, F., Zaky, W., Farahat, E., Zayan, A., Mohammed, A., AbdulAlim, T., 2019. Processed cheese spreads fortified with lycopene extracted from tomato wastes. World Journal of Dairy & Food Sciences 14, 87–93. https://doi.org/10.5829/idosi.wjdfs.2019.87.93

Holt, C., Carver, J.A., Ecroyd, H., Thorn, D.C., 2013. Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. J Dairy Sci 96, 6127–6146. https://doi.org/10.3168/jds.2013-6831

Huppertz, T., Gazi, I., Luyten, H., Nieuwenhuijse, H., Alting, A., Schokker, E., 2017. Hydration of casein micelles and caseinates: Implications for casein micelle structure. Int Dairy J 74, 1–11. https://doi.org/10.1016/j.idairyj.2017.03.006

Ibáñez, R.A., Waldron, D.S., McSweeney, P.L.H., 2016. Effect of fat content and temperature on the translucency of Cheddar cheese. Int Dairy J 54, 33–42. https://doi.org/10.1016/j.idairyj.2015.10.004

Ivens, K.O., Baumert, J.L., Hutkins, R.L., Taylor, S.L., 2017. Effect of proteolysis during Cheddar cheese aging on the detection of milk protein residues by ELISA. J Dairy Sci 100, 1629–1639. https://doi.org/10.3168/jds.2016-11649

Jaros, D., Rohm, H., 2017. Rennets: Applied Aspects, in: Cheese. Elsevier, pp. 53–67. https://doi.org/10.1016/B978-0-12-417012-4.00003-X

Jeong, H.-J., Lee, Y.-K., Ganesan, P., Kwak, H.-S., Chang, Y.H., 2017. Physicochemical, Microbial, and Sensory Properties of Queso Blanco Cheese Supplemented with Powdered Microcapsules of Tomato Extracts. Korean J Food Sci Anim Resour 37, 342–350. https://doi.org/10.5851/kosfa.2017.37.3.342

Joshi, B., Kar, S.K., Yadav, P.K., Yadav, S., Shrestha, L., Bera, T.K., 2020. Therapeutic and medicinal uses of lycopene: a systematic review. Int J Res Med Sci 8, 1195. https://doi.org/10.18203/2320-6012.ijrms20200804

Lazzaro, F., Saint-Jalmes, A., Violleau, F., Lopez, C., Gaucher-Delmas, M., Madec, M.-N., Beaucher, E., Gaucheron, F., 2017. Gradual disaggregation of the casein micelle improves its emulsifying capacity and decreases the stability of dairy emulsions. Food Hydrocoll 63, 189–200. https://doi.org/10.1016/j.foodhyd.2016.08.037

Liburdi, K., Boselli, C., Giangolini, G., Amatiste, S., Esti, M., 2019. An Evaluation of the Clotting Properties of Three Plant Rennets in the Milks of Different Animal Species. Foods 8, 600. https://doi.org/10.3390/foods8120600

Logan, A., Leis, A., Day, L., Øiseth, S.K., Puvanenthiran, A., Augustin, M.A., 2015. Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. Int Dairy J 46, 71–77. https://doi.org/10.1016/j.idairyj.2014.08.005

Manuelian, C.L., Boselli, C., Vigolo, V., Giangolini, G., de Marchi, M., 2020. Effects of animal versus vegetal rennet on milk coagulation traits in Mediterranean buffalo bulk milk. J Dairy Sci 103, 4958–4964. https://doi.org/10.3168/jds.2019-17208

Mehanna, N.Sh., Hassan, F.A.M., El-Messery, T.M., Mohamed, A.G., 2017. Production of Functional Processed Cheese by Using Tomato Juice. International Journal of Dairy Science 12, 155–160. https://doi.org/10.3923/ijds.2017.155.160

Meletharayil, G.H., Patel, H.A., Huppertz, T., 2015. Rheological properties and microstructure of high protein acid gels prepared from reconstituted milk protein concentrate powders of different protein contents. Int Dairy J 47, 64–71. https://doi.org/10.1016/j.idairyj.2015.02.005

National Standardization Agency of Indonesia, 2018. SNI 2980:2018: Keju olahan. Jakarta.

Nugroho, P., Dwiloka, B., Rizqiati, H., 2018. Rendemen, Nilai pH, Tekstur, dan Aktivitas Antioksidan Keju Segar dengan Bahan Pengasam Ekstrak Bunga Rosella Ungu (Hibiscus sabdariffa L.). Jurnal Teknologi Pangan 2, 33–39. https://doi.org/10.14710/jtp.v2i1.19722

Ong, L., Dagastine, R.R., Kentish, S.E., Gras, S.L., 2012a. The effect of pH at renneting on the microstructure, composition and texture of Cheddar cheese. Food Research International 48, 119–130. https://doi.org/10.1016/j.foodres.2012.02.020

Ong, L., Dagastine, R.R., Kentish, S.E., Gras, S.L., 2012b. The effect of pH at renneting on the microstructure, composition and texture of Cheddar cheese. Food Research International 48, 119–130. https://doi.org/10.1016/j.foodres.2012.02.020

Ong, L., Lawrence, R.C., Gilles, J., Creamer, L.K., Crow, V.L., Heap, H.A., Honoré, C.G., Johnston, K.A., Samal, P.K., Powell, I.B., Gras, S.L., 2017. Cheddar Cheese and Related Dry-Salted Cheese Varieties, in: Cheese. Elsevier, pp. 829–863. https://doi.org/10.1016/B978-0-12-417012-4.00033-8

Ramadhany, P., Pramana, A.F., Febiola, A., Handoko, T., 2021. The Influence of Glycerol Monostearate Concentration and Storage Condition on Tomato Powder’s Contents Using Foam Mat Drying Method. Reaktor 21, 1–10. https://doi.org/10.14710/reaktor.21.1.1-10

Sadeghi, M., Madadlou, A., Khosrowshahi, A., Mohammadifar, M., 2014. Acid-induced gelation behavior of casein/whey protein solutions assessed by oscillatory rheology. J Food Sci Technol 51, 2113–2119. https://doi.org/10.1007/s13197-012-0707-y

Silva, B.L., Geraldes, F.M., Murari, C.S., Gomes, E., Da-Silva, R., 2014. Production and Characterization of a Milk-clotting Protease Produced in Submerged Fermentation by the Thermophilic Fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol 172, 1999–2011. https://doi.org/10.1007/s12010-013-0655-7

Soares, N. da C.P., Elias, M. de B., Machado, C.L., Trindade, B.B., Borojevic, R., Teodoro, A.J., 2019. Comparative Analysis of Lycopene Content from Different Tomato-Based Food Products on the Cellular Activity of Prostate Cancer Cell Lines. Foods 8, 201. https://doi.org/10.3390/foods8060201

Soares, N., Machado, C., Trindade, B., Lim, I., Gimba, E., Teodoro, A., Takiya, C., Borojevic, R., 2017. Lycopene Extracts from Different Tomato-Based Food Products Induce Apoptosis in Cultured Human Primary Prostate Cancer Cells and Regulate TP53, Bax and Bcl-2 Transcript Expression. Asian Pac J Cancer Prev. 18, 339–345. https://doi.org/10.22034/APJCP.2017.18.2.339

Solhi, P., Azadmard-Damirchi, S., Hesari, J., Hamishehkar, H., 2020. Production of the processed cheese containing tomato powder and evaluation of its rheological, chemical and sensory characteristics. J Food Sci Technol 57, 2198–2205. https://doi.org/10.1007/s13197-020-04256-1

Wiedyantara, A., Rizqiati, H., Bintoro, V., 2017. Aktivitas antioksidan, nilai pH, rendemen, dan tingkat kesukaan keju mozarella dengan penambahan sari buah naga merah (Hylocereus polyrhizus). Jurnal Teknologi Pangan 1, 1–7. https://doi.org/10.14710/jtp.v1i1.17093

Zheng, Y., Liu, Z., Mo, B., 2016. Texture profile analysis of sliced cheese in relation to chemical composition and storage temperature. J Chem 1–10. https://doi.org/10.1155/2016/8690380




DOI: http://dx.doi.org/10.33512/fsj.v5i1.15975

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.