Evaluation of Urban Road Stability Through the Integration of the Surface Distress Index and International Roughness Index
Abstract
In an effort to improve the quality of transportation infrastructure, road maintenance requires an evaluation of road conditions. The Surface Distress Index (SDI) and the International Roughness Index (IRI) are two primary classical indicators used to assess road conditions. Although both are utilized independently, the relationship between them has not been widely studied. This research aims to analyze the correlation between the Surface Distress Index (SDI) and the International Roughness Index (IRI), particularly in the context of road maintenance, and to evaluate the effectiveness of integrating both indices in urban road maintenance planning. This study was conducted using a correlation method and approach, involving field data collection along urban road segments. The SDI and IRI were measured using standard measurement devices provided by Bina Marga, and the correlation patterns between the two were analyzed statistically. The findings reveal that SDI is significantly correlated with IRI, indicating that as surface distress (SDI) increases, it directly leads to an increase in road surface roughness (IRI). The results also indicate that combining the two indices can improve the accuracy of road condition assessments. The quadratic model was identified as the most optimal for describing the relationship between SDI and IRI, with a model performance explaining 79% of the variation in IRI.
Keywords
Full Text:
PDFReferences
A. Lubis, I. Iskandar, and M. M. L. W. Panjaitan, “Implementation of KNN Methods and GLCM Extraction for Classification of Road Damage Level,” Iaic Transactions on Sustainable Digital Innovation (Itsdi), vol. 4, no. 1, pp. 1–7, 2022, doi: 10.34306/itsdi.v4i1.564.
R. Utami, “Pavement Maintenance Strategy for Provincial Roads in Tarakan City, North Kalimantan,” E3s Web of Conferences, vol. 479, p. 07002, 2024, doi: 10.1051/e3sconf/202447907002.
P. Hermawati, “Assessment of Road Pavement Conditions Using Surface Distress Index (SDI) and Pavement Condition Index (PCI) Methods,” IOP Conf Ser Earth Environ Sci, vol. 1294, no. 1, p. 012030, 2024, doi: 10.1088/1755-1315/1294/1/012030.
B. H. Setiadji, “Proposed SDI equations to improve the effectiveness in evaluating crack damage on the road pavement,” in IOP Conference Series: Materials Science and Engineering, 2019. doi: 10.1088/1757-899X/650/1/012007.
R. Ibrahim, M. A. Sultan, and S. Sabaruddin, “Evaluasi Dan Penanganan Kerusakan Jalan Menggunakan Metode Surface Distress Index Pada Ruas Jalan Ahmad Malawat Kota Tidore Kepulauan,” Teras Jurnal, vol. 13, no. 1, p. 127, 2023, doi: 10.29103/tj.v13i1.831.
D. A. Sari and A. Kisman, “Penilaian Kondisi Jalan Poros Sabbang Selatan Menggunakan Metode Surface Distress Index,” Pena Teknik Jurnal Ilmiah Ilmu-Ilmu Teknik, vol. 6, no. 1, p. 24, 2021, doi: 10.51557/pt_jiit.v6i1.616.
H. A. Setiaputri, “Analysis of Urban Road Damage With Pavement Condition Index (PCI) and Surface Distress Index (SDI) Methods,” Adri International Journal of Sciences Engineering and Technology, vol. 6, no. 01, pp. 10–19, 2021, doi: 10.29138/ijset.v6i01.61.
A. Azam, A. H. Alshehri, M. Alharthai, M. M. El-Banna, A. M. Yosri, and A. A. A. Beshr, “Applications of Terrestrial Laser Scanner in Detecting Pavement Surface Defects,” Processes, vol. 11, no. 5, p. 1370, 2023, doi: 10.3390/pr11051370.
S. Shrestha and R. Khadka, “Assessment of Relationship between Road Roughness and Pavement Surface Condition,” Journal of Advanced College of Engineering and Management, vol. 6, 2021, doi: 10.3126/jacem.v6i0.38357.
S. K. Jha et al., “Data-Driven Web-Based Patching Management Tool Using Multi-Sensor Pavement Structure Measurements,” Transportation Research Record Journal of the Transportation Research Board, vol. 2677, no. 12, pp. 83–98, 2023, doi: 10.1177/03611981231167161.
N. P. Artiwi, E. Amilia, and H. J. Abadi, “Analisa Kerusakan Jalan Pada Ruas Jalan Raya Jakarta Km. 04 Kota Serang Menggunakan Metode Pci Pavement Condition Index) Dan Sdi (Surface Distress Index),” Journal of Sustainable Civil Engineering (Josce), vol. 3, no. 1, pp. 59–72, 2021, doi: 10.47080/josce.v3i1.1120.
P. Sangle, “Studi Tingkat Kerusakan Permukaan Jalan Dengan Kombinasi Nilai Surface Distress Index Dan International Roughnes Index,” Matriks Teknik Sipil, vol. 9, no. 1, p. 15, 2021, doi: 10.20961/mateksi.v9i1.48729.
L. Hasrudin, “Analisis Penilaian Kondisi Perkerasan Jalan Dengan Metode PCI (Pavement Condition Index), SDI (Surface Distress Index) Dan IRI (International Roughness Index),” Syntax Idea, vol. 6, no. 4, pp. 1881–1898, 2024, doi: 10.46799/syntax-idea.v6i4.3201.
A. Gusnilawati, “ANALISIS PENILAIAN FAKTOR KERUSAKAN JALAN DENGAN PERBANDINGAN METODE BINA MARGA, METODE PCI (PAVEMENT CONDITION INDEX), DAN METODE SDI (SURFACE DISTRESS INDEX) (Studi Kasus Ruas Jalan Patuk-Dlingo, Kec. Dlingo, Kab. Bantul),” Jurnal Rekayasa Infrastruktur Sipil, vol. 2, no. 1, p. 15, 2021, doi: 10.31002/jris.v2i1.3388.
C. Plati, K. Georgouli, and A. Loizos, “Using NDT Data to Assess the Effect of Pavement Thickness Variability on Ride Quality,” Remote Sens (Basel), vol. 15, no. 12, p. 3011, 2023, doi: 10.3390/rs15123011.
P. Múčka, “Relation Between Seated Person Vibrations and the International Roughness Index,” Transportation Research Record Journal of the Transportation Research Board, vol. 2677, no. 6, pp. 351–364, 2023, doi: 10.1177/03611981221147210.
M. Z. Bashar and C. Torres-Machi, “Performance of machine learning algorithms in predicting the pavement international roughness index,” Transp Res Rec, vol. 2675, no. 5, pp. 226–237, 2021.
C. Wang, S. Xu, and J. Yang, “Adaboost Algorithm in Artificial Intelligence for Optimizing the IRI Prediction Accuracy of Asphalt Concrete Pavement,” Sensors, vol. 21, no. 17, p. 5682, 2021, doi: 10.3390/s21175682.
Y. Du, C. Liu, D. Wu, and S. Jiang, “Measurement of International Roughness Index by Using Z‐Axis Accelerometers and GPS,” Math Probl Eng, vol. 2014, no. 1, 2014, doi: 10.1155/2014/928980.
H. Naseri, M. Shokoohi, H. Jahanbakhsh, M. M. Karimi, and E. O. D. Waygood, “Novel Soft-Computing Approach to Better Predict Flexible Pavement Roughness,” Transportation Research Record Journal of the Transportation Research Board, vol. 2677, no. 10, pp. 246–259, 2023, doi: 10.1177/03611981231161051.
A. Naguib, S. M. El-Badawy, and M. H. Z. Ibrahim, “International Roughness Index Predictive Model for Rigid Pavements Based on LTPP Data(Dept. C (PUPLIC)),” Bulletin of the Faculty of Engineering Mansoura University, vol. 40, no. 2, pp. 30–38, 2020, doi: 10.21608/bfemu.2020.101239.
M. Mubaraki, “Development of Pavement Condition Rating Model and Pavement Roughness Model for Saudi Highways,” Adv Mat Res, vol. 723, pp. 820–828, 2013, doi: 10.4028/www.scientific.net/amr.723.820.
M. Rifai, “Evaluation of Functional and Structural Conditions on Flexible Pavements Using Pavement Condition Index (PCI) and International Roughness Index (IRI) Methods,” E3s Web of Conferences, vol. 429, p. 05011, 2023, doi: 10.1051/e3sconf/202342905011.
M. Isradi, “Relationship of Present Serviceability Index for Flexible and Rigid Pavement in Urban Road Damage Assessment Using Pavement Condition Index and International Roughness Index,” E3s Web of Conferences, vol. 429, p. 03012, 2023, doi: 10.1051/e3sconf/202342903012.
K. A. Abaza, “Simplified Markovian-based pavement management model for sustainable long-term rehabilitation planning,” Road Materials and Pavement Design, vol. 24, no. 3, 2023, doi: 10.1080/14680629.2022.2048055.
S. A. Dewan and R. E. Smith, “Estimating International Roughness Index From Pavement Distresses to Calculate Vehicle Operating Costs for the San Francisco Bay Area,” Transportation Research Record Journal of the Transportation Research Board, vol. 1816, no. 1, pp. 65–72, 2002, doi: 10.3141/1816-08.
A. M. Hidayat, “Evaluation of Pavement Condition Based on the Value of Surface Distress Index and Pavement Condition Index on the Road Section of Gedong Tataan - Kedondong, Pesawaran,” Dinamika Teknik Sipil Majalah Ilmiah Teknik Sipil, vol. 16, no. 2, pp. 68–78, 2023, doi: 10.23917/dts.v16i2.23271.
B. H. Setiadji, S. Supriyono, and D. Purwanto, “Surface Distress Index Updates to Improve Crack Damage Evaluation,” 2019, doi: 10.2991/apte-18.2019.10.
W. S. Winurseto, A. T. Mulyono, and L. B. Suparma, “Modeling of Road Performance Assessment Based on Pavement, Shoulder, and Drainage,” Istrazivanja I Projektovanja Za Privredu, vol. 21, no. 2, pp. 598–607, 2023, doi: 10.5937/jaes0-41212.
Q. Zhao, “Assessing and Projecting the Global Burden of Thyroid Cancer, 1990–2030: Analysis of the Global Burden of Disease Study,” J Glob Health, vol. 14, 2024, doi: 10.7189/jogh.14.04090.
DOI: http://dx.doi.org/10.62870/fondasi.v14i1.30893
Refbacks
- There are currently no refbacks.
FONDASI : JURNAL TEKNIK SIPIL HAS BEEN INDEXED BY
Fondasi: Jurnal Teknik Sipil by Jurusan Teknik Sipil UNTIRTA is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.