PENENTUAN JENIS OKSIDATOR DAN JUMLAH SIKLUS PROSES TERBAIK PADA TAHAP PRETREATMENT PENGOLAHAN LIMBAH CAIR OXAMYL
Abstract
Penggunaan oxamyl sebagai bahan aktif dalam pembuatan produk pestisida menghasilkan produk samping yang digolongkan sebagai limbah bahan berbahaya dan beracun serta non biodegradasi dengan nilai chemical oxygen demand (COD) yang tinggi. Saat ini, proses pengolahan limbah oxamyl masih menggunakan metode konvesional dengan biaya proses yang cukup tinggi. Teknologi yang efektif dan efisien untuk mengolah limbah dari golongan karbamasi adalah teknologi advance oxydation processes (AOP). Metode ini mengkombinasikan beberapa reaksi yaitu, ozonisasi dengan gelombang ultra violet (UV) serta oksidator kuat peroksida dan persulfat untuk menghasilkan radikal bebas OH-. Tujuan dari penelitian ini adalah mendapatkan jenis oksidator dan jumlah siklus proses terbaik terhadap laju degradasi COD dan %Oxamyl. Pengolahan limbah oxamyl menggunakan 3 oksidator yaitu peroksida, persulfat, dan campuran peroksid & persulfat. Dosis oksidator yang digunakan adalah 5000 ppm. Hasil terbaik dari tahap ini dialirkan oleh pompa untuk disirkulasi di rangkaian alat AOP dengan jumlah siklus proses yaitu 20, 40, 60, 80, 100, 120, 140, dan 160. Pada penelitian ini, oksidator terbaik adalah campuran antara peroksida dan persulfat dalam rentang waktu 48 jam dengan nilai COD dan kandungan oxamyl masing-masing sebesar 4254,63 ppm, 0,31% dan 43173,21 ppm 1,9%.
Keywords
Full Text:
PDFReferences
Beltran, F. J. (2003). Ozone Reaction Kinetics for Water and Wastewater Systems. In Ozone Reaction Kinetics for Water and Wastewater Systems. https://doi.org/10.1201/9780203509173
Beltrán, F. J., González, M., Rivas, J., & Marín, M. (1994). Oxidation of Mecoprop in Water with Ozone and Ozone Combined with Hydrogen Peroxide. Industrial and Engineering Chemistry Research, 33(1), 125–136. https://doi.org/10.1021/ie00025a017
Chaudhuri, M., & Wei, T. Y. (2009). Decolourisation of reactive dyes by modified photo-fenton process under irradiation with sunlight. Nature Environment and Pollution Technology, 8(2), 359–363.
Cooper, W. J., Cramer, C. J., Martin, N. H., Mezyk, S. P., O’Shea, K. E., & Von Sonntag, C. (2009). Free radical mechanisms for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. In Chemical Reviews (Vol. 109, Issue 3, pp. 1302–1345). https://doi.org/10.1021/cr078024c
Garoma, T., & Gurol, M. D. (2004). Degradation of tert-butyl alcohol in dilute aqueous solution by an O 3/UV process. Environmental Science and Technology, 38(19), 5246–5252. https://doi.org/10.1021/es0353210
Hassaan, M. A., El Nemr, A., El-Zahhar, A. A., Idris, A. M., Alghamdi, M. M., Sahlabji, T., & Said, T. O. (2022). Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: a comparative study. Toxin Reviews, 41(1), 38–47. https://doi.org/10.1080/15569543.2020.1827431
Ikehata, K., & El-Din, M. G. (2006). Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: A review. In Journal of Environmental Engineering and Science (Vol. 5, Issue 2, pp. 81–135). https://doi.org/10.1139/s05-046
Ippolito, N. M., Zueva, S. B., Ferella, F., Corradini, V., Baturina, E. V., & Vegliò, F. (2021). Treatment of waste water from a winery with an advanced oxidation process (AOP). IOP Conference Series: Earth and Environmental Science, 640(6). https://doi.org/10.1088/1755-1315/640/6/062025
Javier Benitez, F., Acero, J. L., & Real, F. J. (2002). Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes. Journal of Hazardous Materials, 89(1), 51–65. https://doi.org/10.1016/S0304-3894(01)00300-4
Kuo, W. S. (2002). Photocatalytic oxidation of pesticide rinsate. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 37(1), 65–74. https://doi.org/10.1081/PFC-120002898
Mehrabadi, Z. S. (2016). Performance of advanced oxidation process (UV/O3/H2O2) degrading amoxicillin wastewater: A comparative study. Journal of Applied Research in Water and Wastewater, 5(31), 222–231. http://hamayesh.razi.ac.ir/article_572_c8f9aa10927099803a35777347ab43f9.pdf
Rosenfeldt, E. J., Linden, K. G., Canonica, S., & von Gunten, U. (2006). Comparison of the efficiency of {radical dot}OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Research, 40(20), 3695–3704. https://doi.org/10.1016/j.watres.2006.09.008
Schoenell, E. K., Otto, N., Rodrigues, M. A. S., & Metzger, J. W. (2022). Removal of Organic Micropollutants from Treated Municipal Wastewater by O3/UV/H2O2 in a UVA-LED Reactor. Ozone: Science and Engineering, 44(2), 172–181. https://doi.org/10.1080/01919512.2021.1900716
W Haag, C. Y. (1999). Ozonation of U.S. drinking water sources: HO• concentration and oxidation-competition values. Eleventh Ozone World Congress., S – 17–119 – 126.
DOI: http://dx.doi.org/10.36055/jip.v11i1.14734
Refbacks
- There are currently no refbacks.
Jurnal integrasi Proses (JIP) has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.