SINTESIS BIOPLASTIK DARI SELULOSA ASETAT TANDAN KOSONG KELAPA SAWIT: SEBUAH KAJIAN
Abstract
Seiring perkembangan zaman, kesadaran masyarakat akan produk-produk ramah lingkungan terus meningkat. Salah satu material yang tidak ramah lingkungan adalah plastik dan yang paling sering kita jumpai dalam kehidupan sehari-hari adalah kantong plastik. Material plastik yang banyak dimanfaatkan saat ini merupakan plastik berbasis petrokimia yang sulit terdegradasi di alam. Seiring dengan perkembangan teknologi, alternatif yang dapat menggantikannya yaitu bioplastik. Material bioplastik diproduksi dari bahan baku biomassa. Pemanfaatan limbah biomassa seperti tandan kosong kelapa sawit (TKKS) sangat berpotensi untuk dijadikan bahan baku pembuatan bioplastik. TKKS mengandung kadar selulosa yang tinggi, yang nantinya diproses menjadi selulosa asetat untuk pembuatan bioplastik. Limbah TKKS harus melalui proses pretreatment, delignifikasi dan bleaching terlebih dahulu untuk memperoleh selulosa murni, selanjutnya selulosa murni dilakukan proses asetilasi menghasilkan selulosa asetat. Pada proses pembuatan bioplastik, selulosa asetat sebagai matriks polimer ditambahkan bahan aditif seperti plasticizer dan filler untuk meningkatkan sifat fisik dan mekaniknya. Salah satu aplikasi dari bioplastik selulosa asetat yaitu untuk packaging atau kantong kemasan. Penggunaan limbah biomassa TKKS ini dapat memberikan nilai tambah yang semulanya hanya dibuang ke lingkungan atau dijadikan kompos. Artikel kajian ini membahas mengenai pembuatan bioplastik dari selulosa asetat tandan kosong kelapa sawit yang berfokus pada penambahan plasticizer dan filler.
Keywords
Full Text:
PDFReferences
Aini, A. P., Lee, H. W., Sitompul, J. P., & Rasrendra, C. B. (2018). Production of lactic acid from empty fruit bunch of palm oil using catalyst of barium hydroxide. Paper presented at the MATEC Web of Conferences.
Aini, D. N., Hanifa, H., Mulfa, D. S., & Linda, T. M. (2021). Pengaruh Bioaktivator Selulolitik untuk Mempercepat Pengomposan Tandan Kosong Kelapa Sawit (Elaeis guineensis Jacq.). Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati, 1-7.
Apriani, R., Rohman, T., & Mustikasari, K. (2017). Sintesis dan Karakterisasi Membran Selulosa Asetat dari Tandan Kosong Kelapa Sawit (Synthesis and Characterization of Cellulose Acetate Membranes from Oil Palm Empty Fruit Bunches). Jurnal Riset Industri Hasil Hutan, 9(2), 91-98.
Arnata, I. W., Suprihatin, S., Fahma, F., Richana, N., & Candra Sunarti, T. (2019). Cellulose production from sago frond with alkaline delignification and bleaching on various types of bleach agents. Orient. J. Chem, 35(1), 08-19.
Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J., & Le, T. A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), e07918.
Bahmid, N. A., Syamsu, K., & Maddu, A. (2013). Production of cellulose acetate from oil palm empty fruit bunches cellulose. Chemical and Process Engineering Research, 17(21), 12-20.
Bahmid, N. A., Syamsu, K., & TIP, A. M. (2014). Pengaruh ukuran serat selulosa asetat dan penambahan dietilen glikol (DEG) terhadap sifat fisik dan mekanik bioplastik. Jurnal Teknologi Industri Pertanian, 24(3).
Bello, A., Isa, M. T., Aderemi, B. O., & Mukhtar, B. (2016). Acetylation of cotton stalk for cellulose acetate production. American Academic Scientific Research Journal for Engineering, Technology, and Sciences, 15(1), 137-150.
Bishop, G., Styles, D., & Lens, P. N. (2021). Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resources, Conservation and Recycling, 168, 105451.
Boonniteewanich, J., Pitivut, S., Tongjoy, S., Lapnonkawow, S., & Suttiruengwong, S. (2014). Evaluation of carbon footprint of bioplastic straw compared to petroleum based straw products. Energy Procedia, 56, 518-524.
Chen, H. (2014). Chemical composition and structure of natural lignocellulose. Biotechnology of lignocellulose (pp. 25-71): Springer.
Chen, H., Yang, F., Du, J., Xie, H., Zhang, L., Guo, Y., ... & Liu, Y. (2018). Efficient transesterification reaction of cellulose with vinyl esters in DBU/DMSO/CO2 solvent system at low temperature. Cellulose, 25(12), 6935-6945.
Chinn, H, Cox, W, & Yokose, K. (2004). Chemical Economics Handbook (CEH) Marketing Research Report. Vinyl Acetate, SRI Consulting.
Coppola, G., Gaudio, M. T., Lopresto, C. G., Calabro, V., Curcio, S., & Chakraborty, S. (2021). Bioplastic from renewable biomass: a facile solution for a greener environment. Earth Systems and Environment, 5(2), 231-251.
Crépy, L., Chaveriat, L., Banoub, J., Martin, P., & Joly, N. (2009). Synthesis of cellulose fatty esters as plastics—influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2(2), 165-170.
Darmawan, M. T., Elma, M., & Ihsan, M. (2018). Sintesis dan Karakterisasi Selulosa Asetat dari Alfa Selulosa Tandan Kosong Kelapa Sawit. Jukung (Jurnal Teknik Lingkungan), 4(1).
Daud, W. R. W., & Djuned, F. M. (2015). Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation. Carbohydrate Polymers, 132, 252-260.
Dewanti, D. P. (2018). Potensi Selulosa dari Limbah Tandan Kosong Kelapa Sawit untuk Bahan Baku Bioplastik Ramah Lingkungan Cellulose Potential of Empty Fruit Bunches Waste as The Raw Material of Bioplastics Environmentally Friendly. Jurnal Teknologi Lingkungan, 19(1).
Di Bartolo, A., Infurna, G., & Dintcheva, N. T. (2021). A review of bioplastics and their adoption in the circular economy. Polymers, 13(8), 1229.
Etikaningrum, J. H., Iriani, E. S., Syarief, R., & Permana, A. W. (2016). Pengaruh Penambahan Berbagai Modifikasi Serat Tandan Kosong Sawit Pada Sifat Fungsional Biodegradable Foam. Jurnal Penelitian Pascapanen Pertanian, 3(3), 146-155.
Fatmayati, F., & Deli, N. A. (2017). Delignifikasi Batang Sawit Nonproduktif secara Organosolv dengan Asam Formiat. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 6(3), 113-118.
Gaol, M. R. L. L., Sitorus, R., Yanthi, S., Surya, I., & Manurung, R. (2013). Pembuatan selulosa asetat dari α-selulosa tandan kosong kelapa sawit. Jurnal Teknik Kimia USU, 2(3), 33-39.
Gericke, M., Fardim, P., & Heinze, T. (2012). Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules, 17(6), 7458-7502.
Grunert, M., & Winter, W. T. (2002). Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Journal of Polymers and the Environment, 10(1), 27-30.
Hairani, N., Harahap, H., & Herawan, T. (2015). The Effect of Glycerol and Oil Palm Empty Fruit Bunches Microcrystalline Cellulose Loading on Tensile Properties and Water Absorption of Cassava Starch Composite. In Advanced Materials Research (Vol. 1123, pp. 151-154). Trans Tech Publications Ltd.
Hamzah, F. H., Sitompul, F. F., Ayu, D. F., & Pramana, A. (2021). Effect of the Glycerol Addition on the Physical Characteristics of Biodegradable Plastic Made from Oil Palm Empty Fruit Bunch. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 10(3).
Handayani, A. S., Chrisvynlia, Doohan, T., Christwardana, M., & Enjarlis. (2019). Cellulose triacetate synthesis from empty fruit bunches of oil palm’s cellulose. In AIP Conference Proceedings (Vol. 2175, No. 1, p. 020075). AIP Publishing LLC.
Hargono, H., Nurcahyaningsih, I., & Candra, P. D. (2021). Pengaruh Senyawa Delignifikasi dan Hidrolisis Asam dengan Penambahan FeSO4 pada Produksi Glukosa dari Spirodela Polyrhiza. Jurnal Inovasi Teknik Kimia, 6(2), 55-59.
Hassan, A., Salema, A. A., Ani, F. N., & Bakar, A. A. (2010). A review on oil palm empty fruit bunch fiber‐reinforced polymer composite materials. Polymer Composites, 31(12), 2079-2101.
Hassan, N., & Idris, A. (2016). Simultaneous saccharification and fermentation of lactic acid from empty fruit bunch at high solids loading. BioResources, 11(2), 3799-3812.
Herawan, T., & Rivani, M. (2015). Synthesis of biodegradable plastic films from oil palm empty fruit bunch cellulose. In Advanced Materials Research (Vol. 1123, pp. 173-176). Trans Tech Publications Ltd.
Herawan, T., Rivani, M., Halimatudahliana, H., & Irawan, S. (2018). Oil palm based cellulose esters as raw material for environmentally friendly bio-plastic. Majalah Kulit, Karet, dan Plastik, 34(1), 33-40.
Hidayani, T. R., Pelita, E., & Gusfiyesi, G. (2017). Analisis sifat fisika pemanfaatan pati tandan kosong sawit dan limbah plastik LDPE sebagai bahan pembuatan plastik biodegradabel. Majalah Kulit, Karet, dan Plastik, 33(1), 29-34.
Ibrahim, N. I., Shahar, F. S., Sultan, M. T. H., Shah, A. U. M., Safri, S. N. A., & Mat Yazik, M. H. (2021). Overview of bioplastic introduction and its applications in product packaging. Coatings, 11(11), 1423.
Indrayani, Y., Suryanegara, L., Sagiman, S., Roslinda, E., & Marwanto, M. (2019). Biodegradable of bio-composites made from Polylactid Acid (PLA) and cellulose fibers from oil palm empty fruit bunch. Nusantara Bioscience, 11(1), 8-11.
Isroi. (2015). Biological Pretreatment of Oil Palm Empty Fruit Bunches. Paper presented at the 2nd International Symposium on Integrated Biorefinary (ISIBio), Bogor.
Isroi, Cifriadi, A., Panji, T., Wibowo, N. A., & Syamsu, K. (2017). Bioplastic production from cellulose of oil palm empty fruit bunch. In IOP Conference Series: Earth and Environmental Science (Vol. 65, No. 1, p. 012011). IOP Publishing.
Jabeen, N., Majid, I., & Nayik, G. A. (2015). Bioplastics and food packaging: A review. Cogent Food & Agriculture, 1(1), 1117749.
Koedel, J., Callsen, C., Weise, M., Puchtler, F., Weidinger, A., Altstaedt, V., ... & Biersack, B. (2020). Investigation of melamine and DOPO-derived flame retardants for the bioplastic cellulose acetate. Polymer Testing, 90, 106702.
Kurniaty, I., Hasyim, U. H., & Yustiana, D. (2017). Proses delignifikasi menggunakan naoh dan amonia (nh3) pada tempurung kelapa. Jurnal Integrasi Proses, 6(4), 197-201.
Lee, Y. D., Pang, M. M., Koay, S. C., Ong, T. K., & Tshai, K. Y. (2020). Effect of empty fruit bunch fibre loading on properties of plasticised polylactic acid biocomposites. In AIP Conference Proceedings (Vol. 2233, No. 1, p. 040002). AIP Publishing LLC.
Ligero, P., Villaverde, J. J., de Vega, A., & Bao, M. (2008). Delignification of Eucalyptus globulus saplings in two organosolv systems (formic and acetic acid): Preliminary analysis of dissolved lignins. Industrial Crops and Products, 27(1), 110-117.
Mandasari, A., Safitri, M. F., Perangin-angin, E. R., Sunarwati, D., Safitri, W. D., & Nasution, H. I. (2017). Karakterisasi Uji Kekuatan Tarik (Tensile Strength) Film Plastik Biodegradable dari Tandan Kosong Kelapa Sawit dengan Penguat Zink Oksida dan Gliserol. EINSTEIN (e-Journal), 5(2).
Maryana, R., Jatmiko, T. H., Prasetyo, D. J., Rizal, W. A., Suwanto, A., Praharasti, A. S., ... & Rizaluddin, A. T. (2019). Evaluation of high purity cellulose production from pretreated various agricultural biomass wastes. In IOP Conference Series: Earth and Environmental Science (Vol. 251, No. 1, p. 012001). IOP Publishing.
Mauliana, M., Kurniasih, E., & Syafruddin, S. (2019). Synthesis of Acetate Cellulosa from The Palm Oil Empty Floor through The Reaction of Activation. Jurnal Sains dan Teknologi Reaksi, 17(1).
Nasruddin, N. (2012). Delignifikasi tandan kosong kelapa sawit dilanjutkan dengan hidrolisis bertahap untuk menghasilkan glukosa. Jurnal Dinamika Penelitian Industri, 23(1), 77888.
Nilawati, N., Rahmi, R., & Desiyana, L. S. (2019, May). Effect of H2SO4 concentration on cellulose isolation from palm empty fruit bunches. In IOP Conference Series: Materials Science and Engineering (Vol. 523, No. 1, p. 012030). IOP Publishing.
Nurhadini, N., & Arcana, I. M. (2018). Synthesis of Cellulose Acetate From Oil Palm Empty Fruit Bunch and Its Properties As Polymer Electrolyte Membranes on Lithium Ion Battery. Jurnal Kimia Mulawarman, 15(2), 111-117.
Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, 12(5), 2145-2169.
Park, H. M., Misra, M., Drzal, L. T., & Mohanty, A. K. (2004). “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules, 5(6), 2281-2288.
Pei, L., Schmidt, M., & Wei, W. (2011). Conversion of biomass into bioplastics and their potential environmental impacts. Biotechnology of biopolymers, 3, 58-74.
Puls, J., Wilson, S. A., & Hölter, D. (2011). Degradation of cellulose acetate-based materials: a review. Journal of Polymers and the Environment, 19(1), 152-165.
Rahayu, D. U. C., Hutauruk, J. E., Krisnandi, Y. K., & Saepudin, E. (2020). Oil palm empty fruit bunch (OPEFB) (Elaeis guineensis Jacq.) cellulose conversion into levulinic acid using hierarchical Mn/ZSM-5 heterogeneous catalyst. IOP Conference Series: Materials Science and Engineering, 763(1), 012034.
Rahman, A. R., Syamsu, K. S., & Isroi, I. I. (2019). Biodegradability of bioplastic in natural environment. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 9(2), 258-263.
Rahman, M. H., & Bhoi, P. R. (2021). An overview of non-biodegradable bioplastics. Journal of cleaner production, 294, 126218.
Rayung, M., Ibrahim, N. A., Zainuddin, N., Saad, W. Z., Razak, N. I. A., & Chieng, B. W. (2014). The effect of fiber bleaching treatment on the properties of poly (lactic acid)/oil palm empty fruit bunch fiber composites. International journal of molecular sciences, 15(8), 14728-14742.
Reshmy, R., Thomas, D., Philip, E., Paul, S. A., Madhavan, A., Sindhu, R., ... & Binod, P. (2021). Bioplastic production from renewable lignocellulosic feedstocks: a review. Reviews in Environmental Science and Bio/Technology, 20(1), 167-187.
Rohmawati, B., Sya’idah, F. A. N., Alighiri, D., & Eden, W. T. (2018). Synthesis of bioplastic-based renewable cellulose acetate from teak wood (tectona grandis) biowaste using glycerol-chitosan plasticizer. Oriental Journal of Chemistry, 34(4), 1810.
Saffian, H. A., Abdan, K., Hassan, M. A., Ibrahim, N. A., & Jawaid, M. (2016). Characterisation and biodegradation of poly (lactic acid) blended with oil palm biomass and fertiliser for bioplastic fertiliser composites. BioResources, 11(1), 2055-2070.
Salehudin, M. H., Salleh, E., Mamat, S. N. H., & Muhamad, I. I. (2014). Starch based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber. Procedia Chemistry, 9, 23-33.
Samah, S. D. (2017). Karakterisasi Plastik Biodegradabel Dari Ldpe-G-Ma Dan Pati Tandan Kosong Sawit. Eksakta: Berkala Ilmiah Bidang MIPA (E-ISSN: 2549-7464), 18(02), 30-38.
Saputri, L. H., & Sukmawan, R. (2020). Pengaruh proses blending dan ultrasonikasi terhadap struktur morfologi ekstrak serat limbah batang kelapa sawit untuk bahan baku bioplastik (selulosa asetat). Rekayasa, 13(1), 15-21.
Sealey, J. E., Samaranayake, G., Todd, J. G., & Glasser, W. G. (1996). Novel cellulose derivatives. IV. Preparation and thermal analysis of waxy esters of cellulose. Journal of Polymer Science Part B: Polymer Physics, 34(9), 1613-1620.
Septevani, A. A., Burhani, D., & Sudiyarmanto. (2018). Pengaruh Proses Pemutihan Multi Tahap Serat Selulosa dari Limbah Tandan Kosong Kelapa Sawit. Jurnal Kimia dan Kemasan, 40(2), 71-78.
Setyaningsih, D., Muna, N., Suryawan, N. B., & Nurfauzi, A. A. (2018). Cellulose nanofiber isolation from palm oil Empty Fruit Bunches (EFB) through strong acid hydrolysis. In IOP Conference Series: Earth and Environmental Science (Vol. 141, No. 1, p. 012027). IOP Publishing.
Shah, M., Rajhans, S., Pandya, H. A., & Mankad, A. U. (2021). Bioplastic for future: A review then and now. World Journal of Advanced Research and Reviews, 9(2), 056-067.
Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494.
Soleman, A. A. (2019). Kantong plastik berbayar membutuhkan regulasi nasional. Berita Kedokteran Masyarakat (BKM)(Vol 35, No 4 (2019): Proceedings the 5th UGM Public Health Symposium), OP10-13.
Souhoka, F. A., & Latupeirissa, J. (2018). Sintesis dan Karakterisasi Selulosa Asetat (CA). Indonesian Journal of Chemical Research, 5(2), 58-62.
Söyler, Z., Onwukamike, K. N., Grelier, S., Grau, E., Cramail, H., & Meier, M. A. (2018). Sustainable succinylation of cellulose in a CO 2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green chemistry, 20(1), 214-224.
Suriani, M. J., Radzi, F. S. M., Ilyas, R. A., Petrů, M., Sapuan, S. M., & Ruzaidi, C. M. (2021). Flammability, tensile, and morphological properties of oil palm empty fruit bunches fiber/pet yarn-reinforced epoxy fire retardant hybrid polymer composites. Polymers, 13(8), 1282.
Syamsu, K., Maddu, A., & Bahmid, N. A. (2016). Synthesis of nanofiber from oil palm empty fruit bunches cellulose acetate for bioplastics production. Synthesis, 8(5).
Tristantini, D., & Sandra, C. (2018). Synthesis of cellulose acetate from palm oil bunches and dried jackfruit leaves. In E3S Web of Conferences (Vol. 67, p. 04035). EDP Sciences.
Vaca‐Garcia, C., Gozzelino, G., Glasser, W. G., & Borredon, M. E. (2003). Dynamic mechanical thermal analysis transitions of partially and fully substituted cellulose fatty esters. Journal of Polymer Science Part B: Polymer Physics, 41(3), 281-288.
Vaca-Garcia, C., Thiebaud, S., Borredon, M. E., & Gozzelino, G. (1998). Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N, N-dimethylacetamide medium. Journal of the American Oil Chemists' Society, 75(2), 315-319.
Wahyusi, K. N., Moenandar, S., & Utami, L. I. (2017). Kajian Proses Asetilasi Terhadap Kadar Asetil Selulosa Asetat dari Ampas Tebu. Jurnal Teknik Kimia, 12(1), 36-40.
Wibowo, A. C., Misra, M., Park, H. M., Drzal, L. T., Schalek, R., & Mohanty, A. K. (2006). Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties. Composites Part A: Applied Science and Manufacturing, 37(9), 1428-1433.
Wolfs, J., & Meier, M. A. (2021). A more sustainable synthesis approach for cellulose acetate using the DBU/CO 2 switchable solvent system. Green Chemistry, 23(12), 4410-4420.
Yang, J., Ching, Y. C., & Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 751.
Yang, Y., Song, L., Peng, C., Liu, E., & Xie, H. (2015). Activating cellulose via its reversible reaction with CO 2 in the presence of 1, 8-diazabicyclo [5.4. 0] undec-7-ene for the efficient synthesis of cellulose acetate. Green Chemistry, 17(5), 2758-2763.
DOI: http://dx.doi.org/10.36055/jip.v11i2.16553
Refbacks
- There are currently no refbacks.
Jurnal integrasi Proses (JIP) has been indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.