ENHANCING THE QUALITY OF BIO OIL FROM RICE STRAW WITH A COMBINATION OF CO-PYROLYSIS WITH PLASTIC AND CO-CATALYST Fe/Al2O3

Esterly Septiana Sirait, Rangga Febry Anwar, Dyah Suci Perwitasari, Ika Nawang Puspitawati

Abstract


This study investigates the enhancement of bio-oil quality derived from rice straw through co-pyrolysis with plastic waste (polypropylene and low-density polyethylene) and utilizing a Fe/Al₂O₃ co-catalyst. The pyrolysis process was conducted at 500°C for 20 minutes, with variations in plastic ratios and catalyst concentrations (0–20%). The results indicated that both the yield and calorific value of the bio-oil significantly increased with higher LDPE content and catalyst addition, achieving an optimum yield of 30.56% and a calorific value of 41.308 MJ/kg at a 0:50 PP:LDPE ratio with 20% catalyst. Viscosity and density values were also optimized, falling within ASTM standards with 2.511 cSt and 0.856 g/cm3. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the dominant presence of gasoline-range hydrocarbons and the absence of corrosive acetic acid. In contrast, ultimate analysis showed high carbon and hydrogen content, suggesting improved fuel quality. These findings indicate that combining co-pyrolysis with the Fe/Al₂O₃ catalyst and integrating plastic waste offers a promising method for producing high-quality, renewable bio-oil from rice straw.


Keywords


Co-catalyst; Co-pyrolysis; Plastic; Pyrolysis; Rice straw

Full Text:

PDF

References


Ademiluyi, T., & Adebayo, T. (2010). Fuel gases from pyrolysis of waste polyethylene sachets. Journal of Applied Sciences and Environmental Management, 11(2).

Afif, F., & Martin, A. (2022). Tinjauan potensi dan Kebijakan energi surya di Indonesia. Jurnal Engine: Energi, Manufaktur, dan Material, 6(1), 43-52.

Al-Maari, M. A., Ahmad, M. A., Din, A. T. M., Hassan, H., & Alsobaai, A. M. (2021). Co-pyrolysis of oil palm empty fruit bunch and oil palm frond with low-density polyethylene and polypropylene for bio-oil production. Arabian Journal of Chemistry, 14(8).

Anjum, S. S., & Prakash, O. (2017). Impact of kerosene oil blend with diesel fuel on engine performance: an experimental investigation. International Journal of Engineering and Technology, 9(3S), 122-126.

ASTM International. (2017). Standard specification for pyrolysis liquid biofuel (ASTM D7544). ASTM International.

Badan Pusat Statistik Kementrian Energi dan Sumberdaya Mineral. (2022). Outlook Energi Indonesia. United Nation.

Brown, R. C. (2021). The role of pyrolysis and gasification in a carbon negative economy. Processes, 9(5).

Cai, N., Li, X., Xia, S., Sun, L., Hu, J., Bartocci, P., Fantozzi, F., Williams, P. T., Yang, H., & Chen, H. (2021). Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: High-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. Energy Conversion and Management, 229.

Chattopadhyay, J., Pathak, T. S., Srivastava, R., & Singh, A. C. (2016). Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy, 103, 513–521.

Gummert, M., Hung, N. V., Chivenge, P., & Douthwaite, B. (2020). Sustainable rice straw management (p. 192). Springer Nature.

Li, P., Shi, X., Wang, X., Song, J., Fang, S., Bai, J., ... & Pang, S. (2021). Bio-oil from biomass fast pyrolysis: Yields, related properties and energy consumption analysis of the pyrolysis system. Journal of Cleaner Production, 328, 129613.

Kasar, P., Sharma, D. K., & Ahmaruzzaman, M. (2020). Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process. Journal of Cleaner Production, 265, 121639.

Kim, H. B., Dutta, P. K., Lee, D. H., & Han, S. J. (2022). A mild synthetic strategy for removing acetic acid from fast pyrolysis-derived bio-oils utilizing Friedel-Crafts acylation reactions. Energy Advances, 12, 980–983.

Kim, J. W., & Lee, T. H. (2025). A comparative study of combustion characteristics for the evaluation of the feasibility of crude bioethanol as a substitute for marine fuel oil. Journal of Marine Science and Engineering, 13(3).

Park, S., Kim, S.J., Oh, K. C., Cho, L. H., Jeon, Y.K., lee, C., & Kim, D. H. (2022). Thermogravimetric analysis based proximate analysis of agro-byproducts and prediction of calorific value. Energy Reports, 8, 12038-12044

Pertamina. (2023). Spesifikasi Produk BBM, BBN & LPG. Supply & Distribution Management

Suharto, T. E. (2022). Cracking of palm oil methyl esters on modified natural zeolite catalysts. Open Science and Technology, 2(1), 93-98.

Suriapparao, D. V., Boruah, B., Raja, D., & Vinu, R. (2018). Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Processing Technology, 175, 64–75.

Terry, L. M., Li, C., Chew, J. J., Aqsha, A., How, B. S., Loy, A. C. M., ... & Sunarso, J. (2021). Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review. Carbon resources conversion, 4, 239-250.

Wijayanti, H., Ratnasari, D., & Hakim, R. (2020). Studi kinetika pirolisis sekam padi untuk menghasilkan bio-oil sebagai energi alternatif. Buletin Profesi Insinyur, 3(2), 83–88.

Wulandari, Y. R., Silmi, F. F., Ermaya, D., Sari, N. P., & Teguh, D. (2023). Pengaruh suhu pirolisis jerami padi terhadap variabel komposisi produk pirolisis menggunakan reaktor batch. Inovasi Teknik Kimia, 8(3), 167-172.

Zdainal Abidin, S. N., Lee, H. V., Asikin-Mijan, N., Juan, J. C., Rahman, N. A., Mastuli, M. S., ... & Kong, P. S. (2020). Ni, Zn and Fe hydrotalcite-like catalysts for catalytic biomass compound into green biofuel. Pure and Applied Chemistry, 92(4), 587-600.




DOI: http://dx.doi.org/10.62870/jip.v14i1.32019

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.