PENGARUH LAJU PEMBEBANAN SUBSTRAT TERHADAP PRODUKSI ASAM LAKTAT BERBAHAN BAKU MOLASE

Rahmayetty Rahmayetty, Nufus Kanani, Intan Fauziah, Nurul Ukhdiya

Abstract


Asam laktat merupakan bahan baku industri polimer PLA (poliasam laktat) yang bersifat biodegradable dan biocompatible. Harga PLA masih jauh diatas harga plastik konvensional. Upaya terus dilakukan untuk mengurangi harga produksi PLA agar bisa bersaing dengan plastic konvensional, salah satunya adalah mencari alternatif bahan baku yang murah. Bahan baku yang menjanjikan adalah molase. Tujuan penelitian ini adalah mendapatkan laju pembebanan substrat molase yang menghasilkan asam laktat optimum. Penelitian ini dilakukan dalam beberapa tahapan yaitu inokulasi Lactobacillus acidophilus, fermentasi molase dan pemurnian asam laktat. Bioreaktor yang digunakan adalah biorektor anaerobik dengan volume 1000 ml. Inokulasi Lactobacillus acidophilus dilakukan dalam medium MRS pada suhu 38°C selama 12 jam. Pada sistem fed batch, substrat dimasukkan secara simultan, dengan variasi laju alir pembebanan substrat 22,2; 33,3; 44,4 dan 66,7 ml/jam. Temperatur fermentor dijaga konstan pada 38oC selama 72 jam. Proses pemurnian dilakukan dengan menambahkan kalsium hidroksida (Ca(OH)2) dan diasamkan dengan larutan asam sulfat 0,01M pada temperature 70°C sehingga menghasilkan asam laktat dan kalsium sulfat (gypsum). Gipsum dan asam laktat disaring sehingga asam laktat terpisah dari gipsum. Laju spesifik pembentukkan produk (qp) tertinggi sebesar 16,065 gP/gS dengan konsentrasi asam laktat sebesar 8,3 g/L terbentuk pada laju pembebanan substrat sebesar 33,3 mg/L.


Full Text:

PDF

References


Abdel-Rahman, Y. Tashiro, K. Sonomoto. (2013). Recent advances in lactic acid production by microbial fermentation processes, Biotechnol. Adv. 31 877–902.

A. Tay, S.T. Yang. (2002) Production of l(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor, Biotechnol. Bioeng. 80, 1–12.

de Oliveira, Regiane Alves, Komesu, Andrea, Rossell, Carlos Eduardo Vaz, & Maciel Filho, Rubens. (2018). Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochemical Engineering Journal, 133, 219-239.

Castillo Martinez, E.M. Balciunas, J.M. Salgado, J.M. Domínguez González, A. Converti, R.P. de S. Oliveira. (2013). Lactic acid properties, applications and production: a review, Trends Food Sci. Technol.30 70–83

Efremenko, Elena N, Spiricheva, Olga V, Veremeenko, Dmitri V, Baibak, Alena V, & Lozinsky, Vladimir I. (2006). L (+)‐Lactic acid production using poly (vinyl alcohol)‐cryogel‐entrapped Rhizopus oryzae fungal cells. Journal of Chemical Technology and Biotechnology, 81(4), 519-522.

Huang, Li Ping, Jin, Bo, Lant, Paul, & Zhou, Jiti. (2005). Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal, 23(3), 265-276.

Hujanen, M, Linko, S, Linko, Y-Y, & Leisola, M. (2001). Optimisation of media and cultivation conditions for L (+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Applied Microbiology and Biotechnology, 56(1-2), 126-130

John, R.P., K.M. Nampoothiri, and A. Pandey. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology. 74(3): p. 524-534.

Lasprilla, Astrid JR, Martinez, Guillermo AR, Lunelli, Betânia H, & Jardini, André L. (2012). Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnology advances, 30(1), 321-328

Lopes, M Savioli, & Jardini, AL. (2012). Poly (lactic acid) production for tissue engineering applications. Procedia Engineering, 42, 1530-1542.

López-Gómez, José Pablo, Alexandri, Maria, Schneider, Roland, & Venus, Joachim. (2018). A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochemistry.

Madhavan Nampoothiri, K, Nair, Nimisha Rajendran, & John, Rojan Pappy. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501

Matsumoto, Ken’ichiro, & Taguchi, Seiichi. (2010). Enzymatic and whole-cell synthesis of lactate-containing polyesters: toward the complete biological production of polylactate. Applied Microbiology and Biotechnology, 85(4), 921-932.

Mimitsuka, K. Sawai, K. Kobayashi, T. Tsukada, N. Takeuchi, K. Yamada, H. Ogino, T. Yonehara. (2015). Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in d-lactic acid carbon yield, J. Biosci. Bioeng. 119 65–71

Nandasana, Anjana D, & Kumar, Surendra. (2008). Kinetic modeling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochemical Engineering Journal, 38(3), 277-284.

Okano, Kenji, Tanaka, Tsutomu, Ogino, Chiaki, Fukuda, Hideki, & Kondo, Akihiko. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85(3), 413-423.

Rahmayetty, Dwi Prasetio, Rosalia, Misri Gozan. (2014). Pembuatan asam laktat berbahan baku tandan kosong kelapa sawit menggunakan metode sakarifikasi fermentasi simultan. Prosding Seminar Nasional Integrasi Proses.

Rasrendra, Carolus B, Fachri, Boy A, Makertihartha, IGBN, Adisasmito, Sanggono, & Heeres, Hero J. (2011). Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem, 4(6), 768-777.

Vaidya, A., et al., Production and recovery of lactic acid for polylactide—an overview. Critical reviews in environmental science and technology, 2005. 35(5): p. 429-467.

Vink, Erwin TH, Rabago, Karl R, Glassner, David A, & Gruber, Patrick R. (2003). Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and stability, 80(3), 403-419.

Wee, Young-Jung, Kim, Jin-Nam, Yun, Jong-Sun, & Ryu, Hwa-Won. (2004). Utilization of sugar molasses for economical L (+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme and Microbial Technology, 35(6-7), 568-573.

Zhou, Ying, Domínguez, José M, Cao, Ningjun, Du, Jianxin, & Tsao, George T. (1999). Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Applied Biochemistry and Biotechnology, 78(1-3), 401-407.




DOI: http://dx.doi.org/10.36055/jip.v8i2.6963

Refbacks

  • There are currently no refbacks.


Jurnal integrasi Proses (JIP) has been indexed by:

                                         

 

 


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.