Review Pemodelan Rangkaian Listrik pada Fenomena Partial Discharge
Abstract
Keywords
Full Text:
PDF (Indonesian)References
M. Au and B. L. Agba, “A Model of Electromagnetic Interferences Induced by Corona Discharges for Wireless Channels in Substation Environments,” IEEE Trans. Electromagn. Compat., vol. 57, no. 3, pp. 522–532, 2015.
K. Firuzi, M. Vakilian, B. T. Phung, and T. R. Blackburn, “Partial Discharges Pattern Recognition of Transformer Defect Model by LBP & HOG Features,” IEE Trans. Power Deliv., vol. 8977, no. c, 2018, doi: 10.1109/TPWRD.2018.2872820.
U. Khayam, “Design , Implem mentation , and Testing of Partial Discharge Signal Pattern Recognition an nd Judgment System Applic cation Using Statistical l Method,” pp. 314–318, 2015.
C. J. Chou and C. H. Chen, “Measurement and analysis of partial discharge of high and medium voltage power equipment,” Proc. - 2018 7th Int. Symp. Next-Generation Electron. ISNE 2018, no. Isne, pp. 1–4, 2018, doi: 10.1109/ISNE.2018.8394749.
M. Zhu, J. Zhang, Y. Li, Y. Wei, J. Xue, and J. Deng, “Partial Discharge Signals Separation Using Cumulative Energy Function and Mathematical Morphology Gradient,” IEE Trans. Dielectr. Electr. Insul., vol. 23, no. 1, pp. 482–493, 2015, doi: 10.1109/TDEI.2015.005481.
D. S. Patel and J. A. Patel, “Simulation and Mathematical Analysis of Partial Discharge Measurement in Transformer,” Int. J. Emerg. Technol. Adv. Eng., vol. 5, no. 1, pp. 585–592, 2015.
M. Li and Z. Qinghui, “Study on Simulation Model on Partial Discharge in Void of Solid Insulation,” Adv. Mater. Res., vol. 986–987, pp. 2014–2018, 2018, doi: 10.4028/www.scientific.net/AMR.986-987.2014.
N. Kartalovic, D. Kovacevic, and S. Milosavljevic, “An advanced model of partial discharge in electrical insulation,” Facta Univ. - Ser. Electron. Energ., vol. 24, no. 1, pp. 41–55, 2011, doi: 10.2298/fuee1101041k.
Z. Achillides, M. G. Danikas, and E. Kyriakides, “Partial Discharge Modeling and Induced Charge Concept: Comments and Criticism of Pedersen’s Model and Associated Measured Transients,” IEE Trans. Dielectr. Electr. Insul., vol. 24, no. 2, pp. 1118–1122, 2017, doi: 10.1109/TDEI.2017.006013.
D. R. Cornish and C. Nyamupangedengu, “Time-evolution phenomena of electrical tree partial discharges in 5 %wt MgO, Alumina and Silica Epoxy nanocomposites,” 2014 IEEE Conf. Electr. Insul. Dielectr. Phenomena, CEIDP 2014, pp. 43–46, 2014, doi: 10.1109/CEIDP.2014.6995761.
H. Zheng and S. M. Rowland, “Electrical treeing in a glassy epoxy resin - The filamentary tree and the PD tree,” Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CEIDP, vol. 2017-October, pp. 765–768, 2018, doi: 10.1109/CEIDP.2017.8257517.
R. Zhang, X. Liu, T. Zhang, C. Xue, H. Chen, and Y. Li, “Electrical tree propagation in composite insulation for wind turbine generator under repetitive impulse voltage,” Annu. Rep. - Conf. Electr. Insul. Dielectr. Phenomena, CEIDP, vol. 2016-December, pp. 1007–1010, 2016, doi: 10.1109/CEIDP.2016.7785631.
S. Chen, Z. Lv, S. M. Rowland, J. Carr, and P. J. Wiithers, “Three Dimensional Imaging of Electrical Trees in Multiple Stages,” IEE, pp. 425–428, 2017.
G. Ye, C. Cai, B. Zhou, and M. Ye, “Simulation of electrical trees in XLPE cable insulation and electric field analysis,” J. Eng., vol. 2019, no. 16, pp. 1882–1885, 2019, doi: 10.1049/joe.2018.8704.
B. X. Du, L. W. Zhu, and T. Han, “Effect of ambient temperature on electrical treeing and breakdown phenomenon of polypropylene with repetitive pulse voltage,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 4, pp. 2216–2224, 2017, doi: 10.1109/TDEI.2017.006229.
DOI: http://dx.doi.org/10.36055/setrum.v13i1.25690
Refbacks
- There are currently no refbacks.