Pemodelan Arus Eddy pada Domain Dua Dimensi untuk Evaluasi Objek Logam Non-Magnetik

Imamul Muttakin, Rian Fahrizal, Alief Maulana, Ceri Ahendyarti, Dina Estining Tyas Lufianawati, Irma Saraswati, Fadlil Fadlil

Abstract


Pengujian tak merusak (NDT) berbasis arus eddy merupakan metode evaluasi objek tanpa melakukan kontak dan intrusi. Teknik ini penting digunakan dalam pemantauan kondisi suatu entitas berbahan logam. Keberagaman struktur target menjadi tantangan yang menuntut performa akurasi dan resolusi spasial dari instrumentasi arus eddy. Paper ini membahas pemodelan sensor pada domain dua dimensi menggunakan metode elemen hingga dengan bantuan perangkat lunak multifisika. Konfigurasi sensor kumparan induksi dikaji untuk variasi kondisi objek pada frekuensi operasi di bawah 1 kHz. Pada kumparan dengan inti udara, keberadaan cacat pada objek menghasilkan perubahan tegangan penerima sebesar 0,31%; sedangkan pada kumparan dengan inti besi sebesar 0,41%. Penambahan inti besi pada sensor kumparan induksi meningkatkan sensitivitas deteksi sebesar 86%. Prosedur ini dapat menjadi pemandu dalam mengembangkan sistem instrumentasi berbasis arus eddy yang efektif.

Keywords


Arus Eddy, FEM, Sensor Kumparan, Logam, NDT

Full Text:

PDF (Indonesian)

References


N. O. Romero-Arismendi, J. C. Olivares-Galvan, J. L. Hernandez-Avila, R. Escarela-Perez, V. M. Jimenez-Mondragon, and F. Gonzalez-Montañez, “Past, Present, and Future of New Applications in Utilization of Eddy Currents,” Technologies, vol. 12, no. 4, p. 50, Apr. 2024, doi: 10.3390/technologies12040050.

A. J. Mohamad, K. Ali, D. Rifai, Z. Salleh, and A. A. Z. Othman, “Eddy Current Testing Methods and Design for Pipeline Inspection System: A Review,” J. Phys.: Conf. Ser., vol. 2467, no. 1, p. 012030, May 2023, doi: 10.1088/1742-6596/2467/1/012030.

B. Karanfiloğlu, N. V. Erden, and E. E. Gültekin, “Inspection of aircraft parts by eddy current method,” International Journal of Aeronautics and Astronautics, vol. 4, no. 1, pp. 36–42, Jun. 2023, doi: 10.55212/ijaa.1310747.

A. D. Eslamlou, A. Ghaderiaram, E. Schlangen, and M. Fotouhi, “A review on non-destructive evaluation of construction materials and structures using magnetic sensors,” Construction and Building Materials, vol. 397, p. 132460, Sep. 2023, doi: 10.1016/j.conbuildmat.2023.132460.

K. C. Williams, M. D. O’Toole, M. J. Mallaburn, and A. J. Peyton, “A review of the classification of non-ferrous metals using magnetic induction for recycling,” insight, vol. 65, no. 7, pp. 384–388, Jul. 2023, doi: 10.1784/insi.2023.65.7.384.

A. N. AbdAlla, M. A. Faraj, F. Samsuri, D. Rifai, K. Ali, and Y. Al-Douri, “Challenges in improving the performance of eddy current testing: Review,” Measurement and Control, vol. 52, no. 1–2, pp. 46–64, Jan. 2019, doi: 10.1177/0020294018801382.

S. Borovik, M. Kuteynikova, and Y. Sekisov, “Reducing the Impact of Influence Factors on the Measurement Results from Single-Coil Eddy Current Sensors,” Sensors, vol. 23, no. 1, p. 351, Dec. 2022, doi: 10.3390/s23010351.

A. S. Repelianto and N. Kasai, “The Improvement of Flaw Detection by the Configuration of Uniform Eddy Current Probes,” Sensors, vol. 19, no. 2, p. 397, Jan. 2019, doi: 10.3390/s19020397.

F. Barrarat, K. Rayane, B. Helifa, and I. K. Lefkaier, “Characterization of subsurface cracks in eddy current testing using machine learning methods,” Int J Numerical Modelling, vol. 35, no. 6, p. e2876, Nov. 2022, doi: 10.1002/jnm.2876.

M. A. Machado, “Eddy Currents Probe Design for NDT Applications: A Review,” Sensors, vol. 24, no. 17, p. 5819, Sep. 2024, doi: 10.3390/s24175819.

B. Dita Ayu, R. Rohmadi, A. Rudin, I. Muttakin, and W. P. Taruno, “Design of a Sensor Coil for Electromagnetic Induction Tomography,” MATEC Web Conf., vol. 218, p. 02001, 2018, doi: 10.1051/matecconf/201821802001.

F. N. Adiputri, E. N. Prasetiani, Rohmadi, A. Saputra, I. Muttakin and W. P. Taruno, “Simulation of Magnetic Induction Tomography Sensor with 8-Coils Solenoid and Planar,” 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 2017, pp. 1-5, doi: 10.1109/ICICI-BME.2017.8537753.

I. Muttakin, S.- Y. Yeap, M. M. Mansor, M. H. M. Fathil, I. Ibrahim, I. Ariffin, et al., “Low cost design of precision medical ultrasound power measurement system”, International Journal of Circuits Systems and Signal Processing, vol. 5, no. 6, pp. 672-682, 2011.

S. Tumanski, “Induction coil sensors—a review,” Meas. Sci. Technol., vol. 18, no. 3, pp. R31–R46, Mar. 2007, doi: 10.1088/0957-0233/18/3/R01.

M. N. O. Sadiku, “A simple introduction to finite element analysis of electromagnetic problems,” in IEEE Transactions on Education, vol. 32, no. 2, pp. 85-93, May 1989, doi: 10.1109/13.28037.

J. R. Claycomb, Applied Electromagnetics Using QuickField and MATLAB, USA: Jones & Bartlett Publishers, 2010.

O. Bíró, “Edge element formulations of eddy current problems,” Computer Methods in Applied Mechanics and Engineering, vol. 169, no. 3–4, pp. 391–405, Feb. 1999, doi: 10.1016/S0045-7825(98)00165-0.

B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Society for Industrial and Applied Mathematics, 2008. doi: 10.1137/1.9780898717440.

I. Muttakin, T. Wondrak and M. Soleimani, “Magnetic Induction Tomography Sensors for Quantitative Visualization of Liquid Metal Flow Shape,” in IEEE Sensors Letters, vol. 4, no. 7, pp. 1-4, July 2020, Art no. 6001204, doi: 10.1109/LSENS.2020.3000292.

D. Haryono, I. Muttakin, R. F. Suwandana, A. Sholehah, K. Nugraha, and Fadlil, “Sensor Arus Eddy Koaksial,” Paten Indonesia No. IDS000008689, Aug. 12, 2024.




DOI: http://dx.doi.org/10.62870/setrum.v13i2.29845

Refbacks

  • There are currently no refbacks.