Non-stationary time series data for natural rubber inventory forecasting: A case study

Muhammad Ilham Adelino, Meldia Fitri, Mohammad Farid

Abstract


PPLK Corp. is a company that uses natural rubber as the main raw material to produce crumb rubber. The problem identified in PPLK Corp. is the insufficient amount of natural rubber received to produce and fulfill consumer demand. There have been fluctuations in the amount of natural rubber received and high variability between periods. To minimize this variability, it is necessary to forecast natural rubber requirements. The purpose of this study is to forecast the natural rubber inventory for the next periods using the best-fitted model, which is the Autoregressive Integrated Moving Average (ARIMA) method. A total of 547 daily data points from 2021 to 2022 were used. As a result, the ARIMA (1,1,2) model was found to be the best model for natural rubber forecasting in the rubber factory. The ARIMA (1,1,2) model had the smallest AIC value compared to others. The total daily natural rubber need is forecasted to be around 67.588 kilograms with a range between 64.805 and 70.421 kilograms per day. However, it should be noted that this study was limited to short-term forecasting only.

Keywords


Rubber factory; natural rubber; inventory forecasting; time series; ARIMA

Full Text:

PDF

References


N. Ilmayasinta, “Forecasting Arrival of Foreign Tourists Using Seasonal Arima Box-Jenkins,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 2, pp. 223–230, 2021, doi: 10.30598/barekengvol15iss2pp223-230.

H. Fan, S. Wu, N. Chen, B. Gao, and Y. Xu, “A New Approach for Short-term Time Series Forecasting,” IOP Conf Ser Mater Sci Eng, vol. 646, no. 1, 2019, doi: 10.1088/1757-899X/646/1/012015.

S. K. Paul and P. Chowdhury, “A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19,” International Journal of Physical Distribution and Logistics Management, vol. 51, no. 2, pp. 104–125, 2021, doi: 10.1108/IJPDLM-04-2020-0127.

M. Djunaidi, C. D. Utami, A. K. Alghofari, and H. Munawir, “Selection of Furniture Raw Material Suppliers using Fuzzy Analytical Hierarchy Process,” Jurnal Teknik Industri, vol. 20, no. 1, pp. 12–21, Feb. 2019, doi: 10.22219/jtiumm.vol20.no1.12-21.

N. F. H. B. M. Norizan and Z. B. M. Yusof, “Forecasting Natural Rubber Price in Malaysia by 2030,” Malaysian Journal of Social Sciences and Humanities (MJSSH), vol. 6, no. 9, pp. 382–390, 2021, doi: 10.47405/mjssh.v6i9.986.

M. I. Trianggono, J. Wahyudi, and J. Jumadi, “Implementasi Sistem Administrasi dan Forecasting Hasil Getah Karet Menggunakan Metode Moving Average,” MEANS (Media Informasi Analisa dan Sistem), vol. 6, no. 1, pp. 38–43, 2021, doi: 10.54367/means.v6i1.1257.

R. A. el Vinie, S. Martha, and S. W. Rizki, “Model Vector Autoregressive Exogenous (VARX) Dalam Memprediksi Hasil Produksi Karet PTPN XIII Provinsi Kalimantan Barat,” Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 8, no. 4, pp. 667–674, 2019, doi: 10.26418/bbimst.v8i4.35877.

D. rosa Indah and Z. Maulida, “Pengendalian Persediaan Bahan Baku Pada PT. Aceh Rubber Industries Kabupaten Aceh Tamiang,” Jurnal Manajemen dan Keuangan, vol. 7, no. 2, pp. 157–173, 2018, doi: 10.33059/jmk.v7i2.814.

P. Pumkaesorn and N. H. Paoprasert, “Exploring the effect of different number of periods in Thailand natural rubber supply forecasting models,” IOP Conf. Series: Earth and Environmental Science 1038, vol. 1038, pp. 1–12, 2022, doi: 10.1088/1755-1315/1038/1/012004.

L. Jing Jong, S. Ismail, A. Mustapha, M. H. A. Wahab, and S. Z. S. Idrus, “The Combination of Autoregressive Integrated Moving Average (ARIMA) and Support Vector Machines (SVM) for Daily Rubber Price Forecasting,” IOP Conf Ser Mater Sci Eng, vol. 917, pp. 1–11, 2020, doi: 10.1088/1757-899X/917/1/012044.

H. Zhu, D. Xiao, and J. Kang, “Research on point-pressing based double-sided CNC incremental forming,” Journal of Mechanical Science and Technology, vol. 33, no. 9, pp. 1–12, 2019, doi: 10.1007/s12206-019-0835-7.

D. Oktiani, “Pemodelan Harga CPO Indonesia Tahun 2018 dengan ARIMA,” Majalah Teknologi Agro Industri (Tegi), vol. 10, no. 2, pp. 33–41, 2018, doi: 10.46559/tegi.v10i2.4399.

M. H. Ahmad, P. Y. Ping, and N. Mahamed, “Volatility modelling and forecasting of Malaysian crude palm oil prices,” Applied Mathematical Sciences, vol. 8, no. 121–124, pp. 6159–6169, 2014, doi: 10.12988/ams.2014.48650.

S. Sukono, E. Suryamah, and F. Novinta S, “Application of ARIMA-GARCH Model for Prediction of Indonesian Crude Oil Prices,” Operations Research: International Conference Series, vol. 1, no. 1, pp. 25–33, 2020, doi: 10.47194/orics.v1i1.21.

L. A. Anbar and W. Wahyudin, “Peramalan permintaan tas laptop menggunakan model time series,” Journal Industrial Servicess, vol. 7, no. 2, pp. 285–288, Apr. 2022, doi: 10.36055/jiss.v7i2.14326.

D. K. Silalahi, “Forecasting of Poverty Data Using Seasonal ARIMA Modeling in West Java Province,” Jurnal Teori dan Aplikasi Matematika, vol. 4, no. 1, pp. 76–86, 2020, doi: 10.31764/jtam.v4i1.1888.

M. Ohyver and H. Pudjihastuti, “Arima Model for Forecasting the Price of Medium Quality Rice to Anticipate Price Fluctuations,” Procedia Comput Sci, vol. 135, pp. 707–711, 2018, doi: 10.1016/j.procs.2018.08.215.

S. Sari, S. A. Maharani, P. E. Prakoso, D. J. Putrisardjono, and A. Zaini, “Analisis Peramalan Permintaan Kopi Susu Di Café Kopi.Margonda,” Journal Industrial Servicess, vol. 6, no. 1, pp. 27–30, 2020, doi: 10.36055/jiss.v6i1.9470.

J. Fattah, L. Ezzine, Z. Aman, H. el Moussami, and A. Lachhab, “Forecasting of demand using ARIMA model,” International Journal of Engineering Business Management, vol. 10, pp. 1–9, 2018, doi: 10.1177/1847979018808673.

S. Noureen, S. Atique, V. Roy, and S. Bayne, “Analysis and application of seasonal ARIMA model in Energy Demand Forecasting: A case study of small scale agricultural load,” Midwest Symposium on Circuits and Systems, vol. 2019-Augus, pp. 521–524, 2019, doi: 10.1109/MWSCAS.2019.8885349.

B. Nepal, M. Yamaha, A. Yokoe, and T. Yamaji, “Electricity load forecasting using clustering and ARIMA model for energy management in buildings,” Japan Architectural Review, vol. 3, no. 1, pp. 62–76, 2020, doi: 10.1002/2475-8876.12135.

R. E. Erlinda, U. Yudatama, and E. R. Arumi, “Implementasi Sistem Peramalan Pengadaan Kebutuhan Bahan Baku Pangan Dengan Metode Weighted Moving Average,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 9, no. 2, pp. 323–332, 2022, doi: 10.25126/jtiik.202294700.

A. bin Khamis, R. Hameed, M. E. Nor, N. Che Him, R. Mohd Salleh, and S. N. A. Mohd Razali, “Comparative Study on Forecasting Crude Palm Oil Price using Time Series Models,” Scientific Research Journal, vol. VI, no. XII, 2018, doi: 10.31364/scirj/v6.i12.2018.p1218588.

M. I. Haque and A. R. Shaik, “Predicting crude oil prices during a pandemic: A comparison of arima and garch models,” Montenegrin Journal of Economics, vol. 17, no. 1, pp. 197–207, 2021, doi: 10.14254/1800-5845/2021.17-1.15.

P. Mishra, A. Matuka, M. Abotaleb, W. P. M. C. N. Weerasinghe, K. Karakaya, and S. S. Das, “Modeling and forecasting of milk production in the SAARC countries and China,” Model Earth Syst Environ, vol. 8, no. 1, pp. 947–959, 2022, doi: 10.1007/s40808-021-01138-z.

S. Jaipuria and S. S. Mahapatra, “A Hybrid Forecasting Technique to Deal with Heteroskedastic Demand in a Supply Chain,” Operations And Supply Chain Management, vol. 14, no. 2, pp. 123–132, 2021, doi: 10.31387/oscm0450291.

S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A Comparison of ARIMA and LSTM in Forecasting Time Series,” in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, pp. 1394–1401. doi: 10.1109/ICMLA.2018.00227.

D. Fan, H. Sun, J. Yao, K. Zhang, X. Yan, and Z. Sun, “Well production forecasting based on ARIMA-LSTM model considering manual operations,” Energy, vol. 220, p. 119708, 2021, doi: 10.1016/j.energy.2020.119708.

H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model using LSTM network for demand forecasting,” Comput Ind Eng, vol. 143, p. 106435, 2020, doi: 10.1016/j.cie.2020.106435.

T. Alghamdi, K. Elgazzar, M. Bayoumi, T. Sharaf, and S. Shah, “Forecasting Traffic Congestion Using ARIMA Modeling,” in 15th International Wireless Communications & Mobile Computing Conference (IWCMC), 2019, pp. 1227–1232. doi: 10.1109/IWCMC.2019.8766698




DOI: http://dx.doi.org/10.36055/jiss.v9i1.17778

Refbacks

  • There are currently no refbacks.


  is supported by