Comparison of Normalized Difference Water Index (NDWI) and Sobel Filter Methods in Landsat 8 Imagery for Coastline Extraction
Abstract
For a country, the existence of a coastline has an important value because it acts as a protection for marine resources and determines maritime boundaries between countries. There are various methods used for coastline analysis, both manual by digitizing and automatic by edge detection. This study compares the Normalized Difference Water Index (NDWI) method with the Sobel filter for coastline extraction in the South Coast of Sampang, Madura using Landsat 8 imagery. The best approach is then applied to the image to determine changes in coastlines from 2015 to 2020. This research shows that visually, the NDWI method produces better edges than the Sobel filter because the resulting lines are close to the original conditions in Landsat 8 or Basemap World Imagery. Sobel filter, the resulting accuracy is not very good. It does not approach field conditions, but this filter has the advantage of a relatively fast processing time because it can use a single band. Then the NDWI value generated in this study has a range of -0.497121 to 0.377046. The first class, which is a non-water body object, has a value of -0.497121 to 0. Then the second class, which is a body of water object, has a value of 0 to 0.377046. The coastline change for five years shows a shift in the coastline with a range of 0.62 to 2.75 meters. The Landsat 8 pixel size is 30 meters, while the shift is only <3 meters. So that this experiment does not show any significant coastline changes. Suggestions for further research: It is necessary to conduct a study using high-resolution imagery to confirm changes in the coastline accurately.
Keywords
Full Text:
PDFReferences
Anggraini N, Marpaung S, & Hartuti M. 2017. Analisis Perubahan Garis Pantai Ujung Pangkah Dengan Menggunakan Metode Edge Detection dan Normalized Difference Water Index (Ujung Pangkah Shoreline Change Analysis Using Edge Detection Method And Normalized Difference Water Index). Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital 14(2): 65–78. DOI: https://doi.org/10.30536/j.pjpdcd.1017.v14.a2545.
Danoedoro P. 2012. Pengantar Pengindraan Jauh Digital. In Benedicta Rini W (Ed.), Yogyakarta: Penerbit ANDI. 397 hlm.
Ginting, Natalia DB, & Faristyawan R. 2020. Deteksi Tipe dan Perubahan Garis Pantai Menggunakan Analisis Digital Citra Penginderaan Jauh. GEOMATIKA 6(1): 17–24. DOI: https://doi.org/10.24895/jig.2020.26-1.977.
Halim H, & Halili H. 2016. Studi perubahan garis pantai dengan pendekatan penginderaan jauh di wilayah Pesisir Kecamatan Soropia. Jurnal Sapa Laut (Jurnal Ilmu Kelautan) 1(1): 24–31.
Heriati A, & Husrin S. 2017. Perubahan garis pantai di pesisir Cirebon berdasarkan analisis spasial. Reka Geomatika (2): 52–60.
McFeeters SK. 2013. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sensing 5(7): 3544–3561.
Munir R. 2019. Segmentasi Citra [Bahan Ajar]. Program Studi Teknik Informatika Sekolah Teknik Elektronika, Institut Teknologi Bandung. 49 hlm.
Prayogo LM. 2020. Tutorial Praktis ENVI Versi 5.2 [Classic], Sukabumi: Farha Pustaka. 132 hlm.
Sobel I, & Feldman G. 1973. A 3x3 isotropic gradient operator for image processing. In Hart, P. E. & Duda R. O. Pattern Classification and Scene Analysis: 1–5. DOI: https://doi.org/10.13140/RG.2.1.1912.4965.
Tarigan MS. 2010. Perubahan garis pantai di wilayah pesisir perairan Cisadane, Provinsi Banten. Makara Journal of Science 11(1): 49–55.
USGS [Internet]. 2020. Landsat 8 Imagery. Amerika Serikat: U.S. Department of the Interior [diakses pada tanggal 7 April 2021]. Tersedia pada: https://www.usgs.gov/.
Yadnya MS, Irawan RN. 2014. Analisa Perubahan Garis Pantai Senggigi Menggunakan Pengolahan (GIS) Citra Satelit Pada Matlab. Dielektrika 1(2): 131–135.
DOI: http://dx.doi.org/10.33512/jpk.v11i1.11004
Refbacks
- There are currently no refbacks.