Durability characteristics of millet hush ash: A study on self-compacting concrete
Abstract
Judul: Karakteristik daya tahan abu sekam milet: Studi tentang beton SCC (self-compacting concrete)
Title: Durability characteristics of millet hush ash: A study on self-compacting concrete
Daya tahan adalah salah satu perhatian utama dalam industri beton. Beberapa upaya telah dilakukan untuk mengetahui kesesuaian berbagai bahan pelengkap dari limbah pertanian untuk meningkatkan sifat daya tahan seperti ketahanan asam, serangan sulfat, serangan basa, daya serap, daya tembus klorida, suhu tinggi, dan penyerapan air campuran beton self-compacting. Namun, makalah ini mempelajari daya tahan beton self-compacting yang dimodifikasi dengan abu sekam millet (MHA) yang mengalami kondisi lingkungan yang berbeda seperti serangan sulfat dari asam sulfat dan garam magnesium sulfat, suhu tinggi, dan penyerapan air. Grade 40 (kontrol) SCC yang diperoleh dari serangkaian campuran percobaan menggunakan rasio air-semen 0,35 digunakan untuk penelitian ini. Campuran lain berasal dari campuran kontrol dengan mengganti semen dengan 5, 10, 15, 20, 25, dan 30% berat MHA, masing-masing. Efek dari peningkatan suhu dan penyerapan air sulfat dievaluasi untuk semua campuran. Hasil percobaan penelitian ini menunjukkan bahwa MHA merupakan material pozzolan dan dapat mengurangi serangan air dan sulfat pada beton. Namun, penambahan MHA mengurangi kapasitas beton menahan panas.
Durability is one of the major concerns in concrete industries. Several attempts have been made to investigate the suitability of various supplementary materials from agricultural waste to increase the durability properties such as acid resistance, sulfate attack, alkaline attack, sorptivity, chloride permeability, elevated temperature, and water absorption self-compacting concrete mixes. However, this paper studied the durability properties of self-compacting concrete modified with millet husk ash (MHA) subjected to different environmental conditions such as sulfate attack from sulphuric acid and magnesium sulfate salt, elevated temperature, and water absorption. Grade 40 (control) SCC obtained from serries of trial mixes using 0.35 water-cement ratio was used for this study. Other mixes were derived from the control mix by replacing cement with 5, 10, 15, 20, 25, and 30 % by weight of MHA, respectively. The effects of sulfate elevated temperature, and water absorption was evaluated for all mixes. The experimental results of this work showed that the MHA is a pozzolanic material and can reduce the ingress of water and sulfate attack on concrete. However, the addition of MHA reduces the heat-resisting capacity of concrete.
Keywords
Full Text:
PDF (English)References
Mohamed Y. (2013). Development of carbon fiber reinforced self-consolidating concrete patch for repair applications. Master thesis. Ontario: University of Waterloo.
Awang, H., Atan, M. N., Abidin, N. Z., & Yusof, N. (2016). Cost-reduction of self-compacting concrete incorporating raw rice husk ash. Journal of Engineering Science and Technology, vol. 11, no. 1, pp. 96-108.
Atan M. N., & Awang H. (2011). The compressive and flexural strengths of self compacting concrete using raw rice husk ash. Journal of Engineering, Science and Technology, vol. 6, no. 6, pp. 720 – 732.
Nunes, S., Figueiras, H., Sousa, C., & Figueiras, J. (2009). SCC and conventional concrete on site: Property assessment. Structures and Materials Journal, vol. 2, No. 1, pp. 25 – 36.
Zhu W., Quinn, J., & Bartos, P. J. M. (2002). Aspects of durability of self compacting concrete. Advanced Concrete and Masonry Centre, paper 249, pp. 1–7.
European Federation of National Associations Representing for Concrete. (2002). Guidelines for Self-Compacting Concrete, European Federation for Specialist Construction Chemicals and Concrete Systems. Surrey: EFNARC Association House.
European Concrete. (2009). Sustainable Benefits of Concrete Structures. Brussel: European Concrete Platform ASBL.
Bradu, A., Cazacu, N., Florea, N., & Mihai, P. (2016). Modulus of elasticity of self compacting concrete with diferents levels of limestone powder. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, vol. 62, no. 3, pp. 43-52.
Kapoor, Y. P., Munn, C., & Charif, K. (2003). Self-compacting concrete-an economic approach. Proceeding of 7th International Conference on Concrete in Hot & Aggressive Environments, Manama, Kingdom of Bahrain, pp. 509-520.
Ouchi, M. (2000). State-of-the-art report on self-compactability evaluation. Japan Society of Civil Engineers, no. 30, pp. 80-83.
Marland, G., Boden, T. A., Griffin, R. C., Huang, S. F., Kanciruk, P., & Nelson, T. R. (1989). Estimates of CO2 Emissions from Fossil Fuel Burning and Cement Manufacturing, Based on the United Nationals Energy Statistics and the U.S. Bureau of Mines Cement Manufacturing Data. Report No. #ORNL/CDIAC-25. Tennessee: Carbon Dioxide Information Analysis Centre.
Malhotra, V. M., & Mehta, P. K. (2002). High-performance, high-volume fly ash concrete: materials, mixture proportioning, properties, construction practice, and case histories. Ottawa: Suplementary Cementing Materials for Sustainable Development Inc.
Habeeb, G. A., & Fayyadh, M. M. (2009). Rice husk ash concrete: The effect of RHA average particle size on mechanical properties and drying shrinkage. Australian Journal of Basic and Applied Sciences, vol. 3, no. 3, pp. 1616-1622.
Aboshio , A., Shuaibu, H. G., & Abdulwahab, M. T. (2018). Properties of rice husk ash concrete with periwinkle shell as coarse aggregates. Nigerian Journal of Technological Development, vol. 15, no. 2, pp. 33 – 38.
Felekoglu, B. (2007). Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resources, Conservation and Recycling, vol. 51, no. 4, pp. 770-791.
Ye, G., Liu, X., De Schutter, G., Poppe, A. M., & Taerwe, L. (2007). Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, vol. 29, no. 2, pp. 94-102.
Esping, O. (2008). Effect of limestone filler BET (H2O)-area on the fresh and hardened properties of self compacting concrete. Cement and Concrete Research, vol. 38, no. 7, pp. 938-944.
Sukumar, B., Nagamani, K., & Raghavan, R. S. (2008). Evaluation of strength at early ages of self-compacting concrete with high volume fly ash. Construction and Building Materials, vol. 22, no. 7, pp. 1394–1401.
Liu, M. (2010). Self-compacting concrete with different levels of pulverized fuel ash. Construction and Building Materials, vol. 24, no. 7, pp. 1245-1252.
Siddique, R. (2011). Properties of self-compacting concrete containing class F fly ash. Materials and Design, vol. 32, no. 3, pp. 1502-1507.
Yazici, H. (2008). The effect of silica fume and high-volume class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete, Construction and Building Materials, vol. 22, no. 4, pp. 456-462.
Gesoglu, M., Guneyisi, E. & Ozbay, E. (2009). Properties of self compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Construction and Building Materials, vol. 23, no. 5, pp. 1847-1854.
Turkel, S., & Altuntas, Y. (2009). The effect of limestone powder, fly ash and silica fume on the properties of self-compacting repair mortars. Sadhana, vol. 34, no. 2, pp. 331-343.
Worldatlas, (2017). The Leading Millet Producing Countries in the World. Accessed on www.worldatlas.com/articles/the-leading-millet-producing-countries-in-the-world.html. Accessed at 28th December, 2018.
Akande A. B. (2002). Economic analysis of the relationship between drought and millet production in the arid zone of nigeria: A case study of Borno and Yobe State. Journal of Agriculture and Social Science, vol. 2, no. 3, pp. 112- 121.
Narain, D. B., Fareed, A, M., Shanker, L. M., Abdul Wahab, A., & Irfan, A. S. (2018). Millet husk ash as environmental friendly material in cement concrete. Proceeding of 5th International Conference on Energy, Environment and Sustainable Development 2018, Mehran University of Engineering and Technology, Jamshoro, Pakistan, pp. 153 – 158.
Abdulwahab, M. T., Uche, O. A. U., & Suleiman, G. (2017). Mechanical properties of millet husk ash bitumen stabilized soil block. Nigerian Journal of Technological Development, vol. 14, no.1, pp. 34 – 38.
Jimoh. R. A., Banuso. O. R., & Oyeleke. F. M. (2013). Exploratory assessment of strength characteristics of millet husk ash (MHA) blended cement laterized concrete. Advances in Applied Science Research, vol. 4, no. 1, pp. 452-457.
Uche O. A. U., Adamu M., & Bahuddeen M. A. (2011). Influence of millet husk ash (MHA) on the propertiesof plain concrete. Epistemics in Science, Engineering and Technology, vol. 2, no. 2, pp. 68-73.
Auta, S. M., Shiwua, A. J., & Tsodo, T. Y. (2015). Compressive strength of concrete with millet husk ash (MHA) as partial replacement of cement. Magazine of Civil Engineering, no. 7, pp. 74 – 79.
Rojas, M. F., & Cabrera, J. (2002). The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime-water systems. Cement and Concrete Research, vol. 32, pp. 133–138.
Janotka, I., & Krajci, L. (2003). Utilization of natural zeolite in portland cement of increased sulphate resistance. ACI Special Publications, vol. 192, pp. 223–229.
Shi, C. (1998). Pozzolanic reaction and microstructure of chemical activated lime-fly ash pastes. ACI Materials Journal, vol. 95, no. 5, pp. 537–545.
Fosroc Limited. (2014). Fosroc Conplast SP430. Staffordshire: Fosroc Limited.
Chatveera, B., & Lertwattanaruk, P. (2011). Durability of conventional concretes containing black rice husk ash. J. Environ. Manage., vol. 92 no. 1, pp. 59-66.
Budiea, A., Hussin, M. W., Muthusamy, K., & Ismail, M. E. (2010). Performance of high strength POFA concrete in acidic environment. Concrete research letters, vol. 1, no. 1, pp. 14-18.
Ramesh B. T. S., & Neeraja, D. (2016). Rice husk ash as supplementary material in concrete – A review. International Journal of ChemTech Research, vol. 9, no. 5, pp. 332-337.
Dharani, D., & Arivu T. S. V. (2017). Durability studies on concrete by using groundnut shell ash as mineral admixture. International Journal for Innovative Research in Science and Technology, vol. 3, no. 10, pp. 168 – 172.
Mydin, M. A. O., & Wang, Y. C. (2012). Thermal and mechanical properties of lightweight foamed concrete at elevated temperatures. Magazine of Concrete Research, vol. 64, no. 3, pp. 213-224.
Arabi, N. S. Q., & Sleiman, M. Z. (2014). Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures. Journal of King Saud University – Engineering Sciences, vol. 26, no. 1, pp. 33–39.
Ogork, E. N., & Auwal, A. M. (2016). Mechanical properties of self compacting concrete (SCC) made with corn cob ash (CCA). Book of Proceedings of the 15th Annual International Conference/ Nigerian Materials Congress (NIMACON 2016), Ahmadu Bello University, Zaria, Nigeria, pp. 379-383.
Hafez, E. E., Elmoaty, A. M. A. E., & Mohamed, B. (2014). Effect of filler types on physical, mechanical and microstructure of self compacting concrete and flow-able concrete. Alexandria Engineering Journal, vol. 53, no. 2, pp. 295-307.
Wazumtu, M., & Ogork, E. N. (2015). Assessment of groundnut shell ash (GSA) as admixture in cement paste and concrete. IJISET - International Journal of Innovative Science, Engineering and Technology, vol. 2, no. 2, pp. 77 – 87.
European Committee for Standardization. (2013). Concrete - specification, performance, production and conformity (BS EN 206:2013+A1:2016). London: British Standards Institution.
European Committee for Standardization. (2011). Testing concrete: Method for determination of water absorption (BS 1881-122). London: British Standards Institution.
DOI: http://dx.doi.org/10.36055/tjst.v17i1.10706
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.