Microencapsulation of red ginger oleoresin in maltodextrin and carrageenan using spray drying

Jayanudin Jayanudin, Retno Sulistyo Dhamar Lestari, Aldi Fathurohman, Seta Dewo

Abstract


The purpose of this study was to determine the encapsulation efficiency and cumulative release of red ginger oleoresin from microcapsules with different wall materials. Red ginger oleoresin was added to the maltodextrin solution, followed by a tween 80. The mixture formed was transferred to a spray dryer for the drying process. Other materials used are carrageenan and a combination of maltodextrin and carrageenan in a ratio of 1:1, 2:1, and 1:2. Red ginger oleoresin microcapsules were analyzed for encapsulation efficiency and release test using phosphate buffer medium pH 7.4, then determine release kinetics using zero-order, first-order, Higuchi model, Korsmeyer-Peppas model, and Peppas-Shalin model. The highest encapsulation efficiency was 78.6%, and the lowest cumulative was 58.46% from microcapsules with a wall material of a mixture of maltodextrin and carrageenan with a ratio of 1:2. The release kinetics best fit the Korsmeyer-Peppas and Peppas-Shalin models with anomalous transport (non-Fickian) and Fickian diffusion release mechanisms.

 

Tujuan penelitian ini adalah menentukan efisiensi enkapsulasi dan kumulatif rilis oleoresin jahe merah dari mikrokapsul dengan bahan dinding yang berbeda-beda. Oleoresin jahe merah ditambahkan ke larutan maltodektrin dilanjutkan denganpenambahan tween 80. Campuran yang terbentuk dialirkan ke spray dryer untuk proses pengeringan. Bahan lain yang digunakan adalah karagenan dan perpaduan maltodektrin dan karagenan dengan rasio 1:1, 2:1, dan 1:2. Mikrokapsul oleoresin jahe merah dianalisis untuk efisiensi enkapsulasi dan uji rilis menggunakan medium buffer fosfat pH 7.4, kemudian menentukan kinetika rilis menggunakan model order nol, order pertama, model Higuchi, model Korsmeyer-Peppas, dan Peppas-Shalin. Efisiensi enkapsulasi tertinggi sebesar 78.6% dan kumulatif terendah sebesar 58.46% dari mikrokapsul dengan bahan dinding perpaduan maltodektrin dan karagenan dengan rasio 1:2. Kinetika rilis dengan fitting terbaik dari model Korsmeyer-Peppas dan Peppas-Shalin dengan mekanisme rilis anomalous (non-Fickian) transport dan Fickian diffusion.


Keywords


Maltodextrin, carrageenan, red ginger oleoresin, spray drying.

Full Text:

PDF

References


Bellik, Y. (2014). Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of zingiber officinale roscoe. Asian Pacific Journal of Tropical Disease, vol. 4, no. 1, pp. 40- 44.

Kizhakkayil, J., & Sasikumar, B. (2012). Characterization of ginger (zingiber officinale rosc.) germplasm based on volatile and non-volatile components. African Journal of Biotechnology, vol. 11, no. 4, pp. 777-786.

Oboh, G., Ayodele, J. A., & Adedayo, O. A. (2012). Antioxidant and inhibitory effect of red ginger (zingiber officinale var. rubra) and white ginger (zingiber officinale roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro. Experimental and Toxicologic Pathology, vol. 64, no. 1-2, pp. 31– 36.

Jayanudin, Fahrurrozi, M., Wirawan, S. K., & Rochmadi. (2019). Preparation of chitosan microcapsules containing red ginger oleoresin using emulsion crosslinking method. Journal of Applied Biomaterials & Functional Materials, vol. 17, no. 1, pp. 1-9.

Assegaf, S., Kawilarang, A. P., & Handajani, R. (2020). Antibacterial activity test of red ginger extract (zingiber officinale var. rubrum) against streptococcus pyogenes in vitro. Biomolecular and Health Science Journal, vol. 3, no. 1, pp. 24-27.

Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S., & Didier M. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, vol. 101, pp. 321–340.

Citronberg, J., Bostick, R., Ahearn T., Turgeon, D. K., Ruffin, M. T., Djuric, Z.,. Sen, A., Brenner, D. E., & Zick, S. M. (2013). Effects of ginger supplementation on cell cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, controlled trial. Cancer Prevention Research, vol. 6, no. 4, pp. 271–281.

Onyenekwe, P. C. (2000). Assessment of oleoresin and gingerol contents in gamma irradiated ginger rhizomes. Molecular Nutrition and Food Research, vol. 44, no. 2, pp. 130–132.

Jayanudin, Fahrurrozi, M., Wirawan, S. K., & Rochmadi. (2016). Microencapsulation technology of ginger oleoresin with chitosan as wall material: A review. Journal of Applied Pharmaceutical Science, vol. 6, no. 12, pp. 209-223.

Shaikh, J., Bhosale, R., & Singhal, R. (2006). Microencapsulation of black pepper oleoresin. Food Chemistry, vol. 94, no. 1, pp. 105-110.

Vaidya, S., Bhosale, R., & Singhal, R. S. (2006). Microencapsulation of cinnamon oleoresin by spray drying using different wall materials. Drying Techology, vol. 24, no. 8, pp. 983–92.

Balasubramani, P., Viswanathan, R., & Vairamani, M., (2013). Response surface optimisation of process variables for microencapsulation of garlic (allium sativum L.) oleoresin by spray drying. Biosystems Engineering, vol. 114, no. 3, pp. 205-213.

Ré, M. I., (1998). Microencapsulation by spray drying. Drying Technology: An International Journal, vol. 16, no. 6, pp. 1195-1236.

Mishra, M. (2016). Handbook of Encapsulation and Controlled Release. (pp. 4-15). New York: CRC Press Taylor & Francis Group.

Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release – A review. International Journal of Food Science & Technology, vol. 41, no. 1, pp. 1–21.

Al-Khafaji, M. A., Gaál, A., Wacha, A., Bóta, A., & Varga, Z. (2020). Particle size distribution of bimodal silica nanoparticles: A comparison of different measurement techniques. Materials, vol. 13, no. 14, pp. 1-14.

Chakraborty, S. (2017). Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. Journal of Carbohydrate Chemistry, vol. 36, no. 1, pp. 1-19.

Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, vol. 6, no. 6, pp. 1561-1569.

Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, vol. 44, no. 1, pp. 282-289.

Bae, E. K. & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, vol. 25, no. 8, pp. 549-560.

Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M.D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, vol. 115, no. 4, pp. 443-451.

Yazicioglu, B., Sahin, S., & Sumnu, G. (2014). Microencapsulation of wheat germ oil. Journal of Food Science and Technology, vol. 52, no. 6, pp. 3590-3597.

Santos, G. K., Dutra, K. A., Barros, R. A., da Câmara, C. A., Lira, D. D., Gusmão, N. B., & Navarro, D. M. (2012). Essential oils from Alpinia purpurata (Zingiberaceae): chemical composition, oviposition deterrence, larvicidal and antibacterial activity. Industrial Crops and Products, vol. 40, pp. 254-260.

Unagolla, J. M. & Jayasuriya, A. C. (2018). Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. European Journal of Pharmaceutical Sciences, vol. 114, pp. 199-209.

Jayanudin & Lestari, R. S. D. (2019). Enkapsulasi dan karakterisasi pelepasan terkendali pupuk NPK menggunakan kitosan yang ditaut silang dengan glutaraldehida. ALCHEMY Jurnal Penelitian Kimia, vol. 16, no. 1, pp. 110-125.

Rojas-Nery, E., Güemes-Vera, N., Meza-Marquez, O. G., & Totosaus, A. (2015). Carrageenan type effect on soybean oil/soy protein isolate emulsion employed as fat replacer in panela-type cheese. Grasas y Aceites, vol. 66, no. 4, pp. 1-9.

Dewi, E. N., Purnamayati, L., Kurniasih, & R. A. (2016). Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Jurnal Teknologi, vol. 78, no. 4-2, pp. 45-50.

Cano-Chauca, M., Stringheta, P.C., Ramos, A.M., & Cal-Vidal, J. (2016). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, vol. 6, no. 4, pp. 420-428.

Dash, S, Murthy, P. N., Nath, L., & Chowdhury, P., 2010, kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, vol. 67, no. 3, pp. 217–223.

Ritger, P. L & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, vol. 5, no. 1, pp. 37-42.




DOI: http://dx.doi.org/10.36055/tjst.v17i2.12704

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.