The effect of ceramic shards waste material with the addition of variations of coconut fiber on compressive strength and UPV test in fiber concrete

Yolanda Oktovina Nurul Huda, Pintor Tua Simatupang

Abstract


Waste of coconut fiber (coco fiber) and ceramic shards has the potential that has not been maximally utilized. Using waste as a building material for concrete, can contribute to environmental sustainability and make buildings that are environmentally friendly (green building concepts) and economical. The study aimed to determine the effect of compressive strength and UPV test values produced by waste by ceramic shards of 25% as a substitute for coarse aggregate and coconut fiber as added concrete with variations of 0%, 0.50%, 1.0%, and 1.50% and good variations of concrete. The research method obtained from the results of testing of coarse aggregate, fine aggregate, cement, water, ceramic waste, and coconut fibers are used to determine the calculation of the concrete mix design, then make concrete samples. Based on the test results, the highest compressive strength at the age of 28 days was found in the 4th variation concrete (1.50% with 25% ceramic shard) of 32.95 MPa. From the results of the UPV test, the average velocity of the concrete was 3.5-4.5 m/s. From the results of the study, it was found that the result of the larger test was the UPV test because it looked at the density (velocity). Based on two test methods, the results obtained are increasing the compressive strength of concrete. Variations in the addition of coconut fiber and ceramic shard waste, it has an impact on the quality of the concrete that can achieve the quality of the concrete and the density between the aggregates binds to each other.

 

Limbah serat sabut kelapa (coco fiber) dan pecahan keramik memiliki potensi yang belum maksimal digunakan. Dengan mempergunakan limbah sebagai material penyusun beton maka hal ini dapat berkontribusi terhadap kelestarian lingkungan dan menjadikan bangunan yang ramah lingkungan (green building concept) dan ekonomis. Penelitian bertujuan untuk mengetahui pengaruh nilai kuat tekan dan tes UPV yang dihasilkan limbah oleh pecahan keramik sebesar 25% sebagai substitusi agregat kasar dan serat sabut kelapa sebagai bahan tambah beton dengan variasi 0%, 0.50%, 1.0% serta 1.50% dan variasi beton yang baik. Metode penelitian yang diperoleh dari hasil pengujian agregat kasar, agregat halus, semen, air, limbah keramik, dan serat serabut kelapa digunakan untuk menentukan perhitungan mix design beton, kemudian dilakukan pembuatan sampel beton. Berdasarkan hasil pengujian hasil kuat tekan tertinggi pada umur 28 hari terdapat pada beton variasi ke-4 (1.50% dengan 25% pecahan keramik) sebesar 32.95 MPa. Dari hasil tes UPV didapatkan rata-rata hasil velocity beton 3.5-4.5 m/s. Dari Hasil penelitian didapatkan bahwa hasil pengujjian yang lebih besar yaitu tes UPV dikarenakan melihat dari kerapatan (velocity). Berdasarkan dua metode pengujian, didapatkan hasil meningkatkan kuat tekan beton. Dengan variasi penambahan serat serabut kelapa dan limbah pecahan keramik memberikan dampak kualitas mutu beton yang dapat mencapai mutu beton dan kerapatan antar agregatnya saling mengikat satu sama lain.


Keywords


Ceramic shards, compressive strength, concrete, cocofiber, UPV test.

Full Text:

PDF

References


Mulyono, T. (2004). Teknologi Beton. Yogyakarta: Andi Offset.

Ahmad, W.; Farooq, S.H.; Usman, M.; Khan, M.; Ahmad, A.; Aslam, F.; Yousef, R.A.; Abduljabbar, H.A.; Sufian, M. (2020). Effect of coconut fiber length and content on properties of high strength concrete. Materials, 13(5), 1075. https://doi.org/10.3390/ma13051075

Ramli, M.S., et.al. 2014. Investigation of Mechanical Properties of Coconut Fibre Reinforced Concrete with Partial Replacement of Fine Aggregate by Plastic Waste. India: International Research Journal of Engineering and Technology (IRJET).

Keshavarz, Z., & Mostofinejad, D. (2019). Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Construction and Building Materials, Volume 195, pp. 218-230. https://doi.org/10.1016/j.conbuildmat.2018.11.033.

Kristian, J., Goetomo, J., & Samsurizal, E. (2014). Studi eksperimental penggunaan pecahan keramik sebagai pengganti agregat kasar dalam perancangan campuran beton. Jurnal Teknik Sipil UNTAN, vol. 01, no. 01. pp. 1-7.

Miguel C.S., Nepomuceno, Rui A.S. Isidoro, & José P.G. Catarino. (2018). Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. Construction and Building Materials, Volume 165, Pages 284-294, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.01.052.

S. O. Osuji, S. A. Adegbemileke, K. Agbonze. (2018). Effect of crushed tiles aggregate and oil palm additive on the strength performance of concrete. Journal of Civil Engineering Research, Vol. 8 No. 2, pp. 40-47. doi: 10.5923/j.jce.20180802.04.

SNI 2847:2019. (2019). Persyaratan Beton Struktural Untuk Bangunan Gedung. Badan Standardisasi Nasional

SNI 3402:2008. (2008). Cara Uji Berat Isi Beton Ringan Struktural. Badan Standardisasi Nasional.

L. Suhardiyono. (2000). Tanaman Kelapa: Budidaya Dan Pemanfaatannya. Yogyakarta: Kanisius.

Wicaksono, D. K., & Sudjati, J. J. (2012). Pemanfaatan limbah keramik sebagai agregat kasar dalam adukan beton. KoNTekS, vol. 6, 43-48.

SNI 1974:2011. (2011). Cara Uji Kuat Tekan Beton Dengan Benda Uji Silinder. Badan Standardisasi Nasional.

International Atomic Energy Agency. (2002). Guidebook on Non-destructive Testing of Concrete Structures, Training Course Series No. 17. Vienna: IAEA.

Lawson, I., Danso, K. A., Odoi, H. C., Adjei, C. A., & Quashie, F. K. (2011). Non-destructive evaluation of concrete using ultrasonic pulse velocity. Research Journal of Applied Sciences, Engineering and Technology, 3(6):499-504.

ACI 318. (2019). Building Code Requirements for Structural Concrete (ACI 318-19) Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19). American Concrete Institute.

ASTM-C 597-0. (2016). Standard Test Method for Pulse Velocity Through Concrete. ASTM International

Neville, A. M. (1995). Properties of concrete, Forth and Final Edition. London: Longman.

SNI 7656:2012. (2012). Tata Cara Pemilihan Campuran untuk Beton Normal, Beton Berat dan Beton Massa. Badan Standardisasi Nasional.

Paul O. Awoyera, Oladimeji B. Olalusi, Samuel Ibia, & Krishna Prakash A., (2021). Water absorption, strength and microscale properties of interlocking concrete blocks made with plastic fibre and ceramic aggregates. Case Studies in Construction Materials, Volume 15, e00677, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2021.e00677.

Handani, S. (2009). Pengaruh panjang serat sabut kelapa terhadap kuat tekan dan kuat lentur beton. JURNAL ILMU FISIKA UNIVERSITAS ANDALAS, 1(1), 26–30. https://doi.org/10.25077/jif.1.1.26-30.2009.

Kusmana, D. (2021). Penggunaan ultrasonic pulse velocity untuk kajian engineering struktur bangunan gedung Pasar Kosambi Bandung Indonesia. Jurnal TESLINK: Teknik Sipil Dan Lingkungan, 3(1), 23-30. https://doi.org/10.52005/teslink.v2i1.74

Chandra, D., & Christianto, D. (2019). Hubungan cepat rambat gelombang ultrasonik terhadap mutu beton tanpa agregat kasar. Jurnal Mitra Teknik Sipil, Vol. 2, No. 1, pp. 199-208.

Sudarmadi. (2010). Pengkajian kekuatan beton struktur jembatan pasca kebakaran. Jurnal Sains dan Teknologi Indonesia, vol. 12, no. 3.

Wedhanto, S. (2015). Penggunaan metode ultrasonic pulse velocity test untuk memperkirakan kekuatan dan keseragaman mutu beton K 200 secara non destruktif. Jurnal Bangunan, vol. 20, no. 1, pp. 43-52.




DOI: http://dx.doi.org/10.36055/tjst.v18i1.15053

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Teknika: Jurnal Sains dan Teknologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

Teknika: Jurnal Sains dan Teknologi is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.